Examples of rootMeanSquaredError()


Examples of weka.classifiers.Evaluation.rootMeanSquaredError()

    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.totalCost());
    result[current++] = new Double(eval.avgCost());
   
    result[current++] = new Double(eval.meanAbsoluteError());
    result[current++] = new Double(eval.rootMeanSquaredError());
    result[current++] = new Double(eval.relativeAbsoluteError());
    result[current++] = new Double(eval.rootRelativeSquaredError());
   
    result[current++] = new Double(eval.SFPriorEntropy());
    result[current++] = new Double(eval.SFSchemeEntropy());
View Full Code Here

Examples of weka.classifiers.Evaluation.rootMeanSquaredError()

    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.kappa());
   
    result[current++] = new Double(eval.meanAbsoluteError());
    result[current++] = new Double(eval.rootMeanSquaredError());
    result[current++] = new Double(eval.relativeAbsoluteError());
    result[current++] = new Double(eval.rootRelativeSquaredError());
   
    result[current++] = new Double(eval.SFPriorEntropy());
    result[current++] = new Double(eval.SFSchemeEntropy());
View Full Code Here

Examples of weka.classifiers.Evaluation.rootMeanSquaredError()

    int current = 0;
    result[current++] = new Double(train.numInstances());
    result[current++] = new Double(eval.numInstances());

    result[current++] = new Double(eval.meanAbsoluteError());
    result[current++] = new Double(eval.rootMeanSquaredError());
    result[current++] = new Double(eval.relativeAbsoluteError());
    result[current++] = new Double(eval.rootRelativeSquaredError());
    result[current++] = new Double(eval.correlationCoefficient());

    result[current++] = new Double(eval.SFPriorEntropy());
View Full Code Here

Examples of weka.classifiers.Evaluation.rootMeanSquaredError()

    m_values = values;
   
    // Compute sum of squared errors
    Evaluation eval = new Evaluation(insts);
    eval.evaluateModel(this, insts);
    double msq = eval.rootMeanSquaredError();
   
    // Check whether this is the best attribute
    if (msq < m_minMsq) {
      m_minMsq = msq;
    } else {
View Full Code Here

Examples of weka.classifiers.Evaluation.rootMeanSquaredError()

    int current = 0;
    result[current++] = new Double(train.numInstances());
    result[current++] = new Double(eval.numInstances());

    result[current++] = new Double(eval.meanAbsoluteError());
    result[current++] = new Double(eval.rootMeanSquaredError());
    result[current++] = new Double(eval.relativeAbsoluteError());
    result[current++] = new Double(eval.rootRelativeSquaredError());
    result[current++] = new Double(eval.correlationCoefficient());

    result[current++] = new Double(eval.SFPriorEntropy());
View Full Code Here

Examples of weka.classifiers.Evaluation.rootMeanSquaredError()

    if (expansion==0) {
      m_roots[i].m_isLeaf = true;
      eval = new Evaluation(test[i]);
      eval.evaluateModel(m_roots[i], test[i]);
      if (m_UseErrorRate) expansionError += eval.errorRate();
      else expansionError += eval.rootMeanSquaredError();
      count ++;
    }

    // make tree - expand one node at a time
    else {
View Full Code Here

Examples of weka.classifiers.Evaluation.rootMeanSquaredError()

        continue;
      }
      eval = new Evaluation(test[i]);
      eval.evaluateModel(m_roots[i], test[i]);
      if (m_UseErrorRate) expansionError += eval.errorRate();
      else expansionError += eval.rootMeanSquaredError();
      count ++;
    }
  }

  // no tree can be expanded any more
View Full Code Here

Examples of weka.classifiers.Evaluation.rootMeanSquaredError()

  m_roots[i].m_isLeaf = true;
  Evaluation eval = new Evaluation(test[i]);
  eval.evaluateModel(m_roots[i], test[i]);
  double error;
  if (m_UseErrorRate) error = eval.errorRate();
  else error = eval.rootMeanSquaredError();
  modelError[i].addElement(new Double(error));

  m_roots[i].m_isLeaf = false;
  BFTree nodeToSplit = (BFTree)
  (((FastVector)(parallelBFElements[i].elementAt(0))).elementAt(0));
View Full Code Here

Examples of weka.classifiers.Evaluation.rootMeanSquaredError()

  Evaluation eval = new Evaluation(test);
  eval.evaluateModel(root, test);
  double error;
  if (useErrorRate) error = eval.errorRate();
  else error = eval.rootMeanSquaredError();
  modelError.addElement(new Double(error));
      }

      if (BestFirstElements.size()!=0) {
  FastVector nextSplitElement = (FastVector)BestFirstElements.elementAt(0);
View Full Code Here

Examples of weka.classifiers.Evaluation.rootMeanSquaredError()

    result[current++] = new Double(eval.pctIncorrect());
    result[current++] = new Double(eval.pctUnclassified());
    result[current++] = new Double(eval.kappa());
   
    result[current++] = new Double(eval.meanAbsoluteError());
    result[current++] = new Double(eval.rootMeanSquaredError());
    result[current++] = new Double(eval.relativeAbsoluteError());
    result[current++] = new Double(eval.rootRelativeSquaredError());
   
    result[current++] = new Double(eval.SFPriorEntropy());
    result[current++] = new Double(eval.SFSchemeEntropy());
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.