Examples of predict()


Examples of gov.sandia.cognition.statistics.bayesian.KalmanFilter.predict()

    /*
     * Perform the filtering step
     */
    MultivariateGaussian priorPredictedState = prevState.getState().clone();
    final KalmanFilter kf = prevState.getFilter().clone();
    kf.predict(priorPredictedState);
   
    final InverseGammaDistribution scaleSS = prevState.getSigma2SS().clone();
    final MultivariateGaussian systemSS = prevState.getPsiSS().clone();

    final GaussianArHpWfParticle newTransState =
View Full Code Here

Examples of gov.sandia.cognition.statistics.bayesian.KalmanFilter.predict()

    MultivariateGaussian posteriorState = prevState.getState().clone();
    // TODO FIXME gross hack!
//    posteriorState.getCovariance().scaleEquals(sigma2Sample);
//    kf.setMeasurementCovariance(Iy.scale(sigma2Sample));
//    kf.setModelCovariance(Ix.scale(sigma2Sample));
    kf.predict(posteriorState);
    kf.update(posteriorState, data.getObservedValue());
//    kf.setMeasurementCovariance(Iy);
//    kf.setModelCovariance(Ix);
   
View Full Code Here

Examples of gov.sandia.cognition.statistics.bayesian.KalmanFilter.predict()

    /*
     * Perform the filtering step
     */
    MultivariateGaussian priorPredictedState = prevState.getState().clone();
    KalmanFilter kf = Iterables.get(prevState.getHmm().getStateFilters(), predClass);
    kf.predict(priorPredictedState);
   
    final DlmHiddenMarkovModel newHmm = prevState.getHmm().clone();
    final InverseGammaDistribution invScaleSS = prevState.getInvScaleSS().clone();
    final List<MultivariateGaussian> psiSS =
        ObjectUtil.cloneSmartElementsAsArrayList(prevState.getPsiSS());
View Full Code Here

Examples of org.apache.commons.math.stat.regression.SimpleRegression.predict()

        SimpleRegression regression = new SimpleRegression();
        regression.addData(point1.RT, point1.RT2);
        regression.addData(point2.RT, point2.RT2);
        double rt = point1.RT + 1;
        while (rt < point2.RT) {
          RTs newPoint = new RTs(rt, regression.predict(rt));
          list.add(newPoint);
          rt++;
        }

      }
View Full Code Here

Examples of org.apache.commons.math.stat.regression.SimpleRegression.predict()

        SimpleRegression regression = new SimpleRegression();
        regression.addData(point1.RT, point1.RT2);
        regression.addData(point2.RT, point2.RT2);
        double rt = point1.RT + 1;
        while (rt < point2.RT) {
          RTs newPoint = new RTs(rt, regression.predict(rt));
          list.add(newPoint);
          rt++;
        }

      }
View Full Code Here

Examples of org.apache.commons.math3.filter.KalmanFilter.predict()

            final double[] state = filter.getStateEstimation();
            kalmanX.add(state[0]);
            kalmanY.add(state[2]);

            // update the kalman filter with the measurements
            filter.predict(controlVector);
            filter.correct(new double[] { mx, 0, my, 0 } );
        }

        chart.setXAxisTitle("Distance (m)");
        chart.setYAxisTitle("Height (m)");
View Full Code Here

Examples of org.apache.commons.math3.filter.KalmanFilter.predict()

            measuredVoltageSeries.add(measuredVoltage);

            kalmanVoltageSeries.add(filter.getStateEstimation()[0]);
            covSeries.add(filter.getErrorCovariance()[0][0]);

            filter.predict();
            filter.correct(new double[] { measuredVoltage });
        }

        chart1.setYAxisTitle("Voltage");
        chart1.setXAxisTitle("Iteration");
View Full Code Here

Examples of org.apache.commons.math3.stat.regression.SimpleRegression.predict()

        if (cost == 0) break;
        regression.addData(Math.log(cost), m);

    }
   
    double d = regression.predict(Math.log(costThreshold));
   
    return qualifiedWage/d;
   
  }
 
View Full Code Here

Examples of org.apache.spark.mllib.tree.model.DecisionTreeModel.predict()

    // Evaluate model on training instances and compute training error
    JavaPairRDD<Double, Double> predictionAndLabel =
      data.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
        @Override public Tuple2<Double, Double> call(LabeledPoint p) {
          return new Tuple2<Double, Double>(model.predict(p.features()), p.label());
        }
      });
    Double trainErr =
      1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {
        @Override public Boolean call(Tuple2<Double, Double> pl) {
View Full Code Here

Examples of org.apache.spark.mllib.tree.model.WeightedEnsembleModel.predict()

      // Evaluate model on training instances and compute training error
      JavaPairRDD<Double, Double> predictionAndLabel =
          data.mapToPair(new PairFunction<LabeledPoint, Double, Double>() {
            @Override public Tuple2<Double, Double> call(LabeledPoint p) {
              return new Tuple2<Double, Double>(model.predict(p.features()), p.label());
            }
          });
      Double trainErr =
          1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {
            @Override public Boolean call(Tuple2<Double, Double> pl) {
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.