Package org.jquantlib.math.distributions

Examples of org.jquantlib.math.distributions.CumulativeNormalDistribution.derivative()


        case Put:
            Q = (-(n-1.0) - Math.sqrt(((n-1.0)*(n-1.0)) + 4 * K)) / 2;
            LHS = payoff.strike() - Si;
            RHS = temp - (1 - dividendDiscount * cumNormalDist.op(-d1)) * Si / Q;
            bi = -dividendDiscount * cumNormalDist.op(-d1) * (1 - 1/Q)
            - (1 + dividendDiscount * cumNormalDist.derivative(-d1) / Math.sqrt(variance)) / Q;
            while (Math.abs(LHS - RHS)/payoff.strike() > tolerance) {
                Si = (payoff.strike() - RHS + bi * Si) / (1 + bi);
                forwardSi = Si * dividendDiscount / riskFreeDiscount;
                d1 = (Math.log(forwardSi/payoff.strike())+0.5*variance)/Math.sqrt(variance);
                LHS = payoff.strike() - Si;
View Full Code Here


                d1 = (Math.log(forwardSi/payoff.strike())+0.5*variance)/Math.sqrt(variance);
                LHS = payoff.strike() - Si;
                final double /*@Real*/ temp2 = BlackFormula.blackFormula(payoff.optionType(), payoff.strike(), forwardSi, Math.sqrt(variance))*riskFreeDiscount;
                RHS = temp2 - (1 - dividendDiscount * cumNormalDist.op(-d1)) * Si / Q;
                bi = -dividendDiscount * cumNormalDist.op(-d1) * (1 - 1 / Q)
                - (1 + dividendDiscount * cumNormalDist.derivative(-d1) / Math.sqrt(variance)) / Q;
            }
            break;
        default:
            throw new LibraryException(UNKNOWN_OPTION_TYPE); // QA:[RG]::verified
        }
View Full Code Here

            D1 = log_H_S / stdDev + lambda * stdDev;
            D2 = D1 - 2.0 * lambda * stdDev;
            final CumulativeNormalDistribution f = new CumulativeNormalDistribution();
            cum_d1 = f.op(D1);
            cum_d2 = f.op(D2);
            n_d1 = f.derivative(D1);
            n_d2 = f.derivative(D2);
        } else {
            // TODO: not tested yet
            mu = Math.log(dividendDiscount / discount) / variance - 0.5;
            lambda = Math.sqrt( mu * mu - 2.0 * Math.log(discount) / variance);
View Full Code Here

            D2 = D1 - 2.0 * lambda * stdDev;
            final CumulativeNormalDistribution f = new CumulativeNormalDistribution();
            cum_d1 = f.op(D1);
            cum_d2 = f.op(D2);
            n_d1 = f.derivative(D1);
            n_d2 = f.derivative(D2);
        } else {
            // TODO: not tested yet
            mu = Math.log(dividendDiscount / discount) / variance - 0.5;
            lambda = Math.sqrt( mu * mu - 2.0 * Math.log(discount) / variance);
            if (log_H_S > 0) {
View Full Code Here

        strike = strike + displacement;
        final double d1 = Math.log(forward/strike)/stddev + .5*stddev;

        // TODO: code review
        final CumulativeNormalDistribution cdf = new CumulativeNormalDistribution();
        return discount * forward * cdf.derivative(d1);
    }

    // ---
    // ---
    // ---
View Full Code Here

        if (stddev == 0.0) return discount * Math.max(d, 0.0);

        // TODO: code review
        final CumulativeNormalDistribution phi = new CumulativeNormalDistribution();
        @NonNegative
        final double result = discount * stddev * phi.derivative(h) + d * phi.op(h);
        if (result >= 0.0) return result;
        throw new ArithmeticException("negative value");
    }

    // ---
View Full Code Here

            D1 = log_H_S / stdDev + mu * stdDev;
            D2 = D1 - 2.0 * mu * stdDev;
            final CumulativeNormalDistribution f = new CumulativeNormalDistribution();
            cum_d1 = f.op(D1);
            cum_d2 = f.op(D2);
            n_d1 = f.derivative(D1);
            n_d2 = f.derivative(D2);
        } else {
            if (log_H_S > 0) {
                cum_d1 = 1.0;
                cum_d2 = 1.0;
View Full Code Here

            D2 = D1 - 2.0 * mu * stdDev;
            final CumulativeNormalDistribution f = new CumulativeNormalDistribution();
            cum_d1 = f.op(D1);
            cum_d2 = f.op(D2);
            n_d1 = f.derivative(D1);
            n_d2 = f.derivative(D2);
        } else {
            if (log_H_S > 0) {
                cum_d1 = 1.0;
                cum_d2 = 1.0;
            }
View Full Code Here

                D1 = Math.log(forward / strike) / stdDev + 0.5 * stdDev;
                D2 = D1 - stdDev;
                final CumulativeNormalDistribution f = new CumulativeNormalDistribution();
                cum_d1 = f.op(D1);
                cum_d2 = f.op(D2);
                n_d1 = f.derivative(D1);
                n_d2 = f.derivative(D2);
            }
        } else {
            if (forward > strike) {
                cum_d1 = 1.0;
View Full Code Here

                D2 = D1 - stdDev;
                final CumulativeNormalDistribution f = new CumulativeNormalDistribution();
                cum_d1 = f.op(D1);
                cum_d2 = f.op(D2);
                n_d1 = f.derivative(D1);
                n_d2 = f.derivative(D2);
            }
        } else {
            if (forward > strike) {
                cum_d1 = 1.0;
                cum_d2 = 1.0;
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.