Package org.grouplens.lenskit.core

Examples of org.grouplens.lenskit.core.LenskitConfiguration.bind()


        config.bind(EventDAO.class).to(dao);
        config.bind(ItemScorer.class).to(ItemItemScorer.class);
        // this is the default
        config.bind(UserVectorNormalizer.class)
              .to(DefaultUserVectorNormalizer.class);
        config.bind(VectorNormalizer.class)
              .to(IdentityVectorNormalizer.class);
        LenskitRecommenderEngine engine = LenskitRecommenderEngine.build(config);
        session = engine.createRecommender();
        recommender = session.getItemRecommender();
    }
View Full Code Here


    protected EventDAO dao;

    protected LenskitConfiguration getDaoConfig() {
        LenskitConfiguration config = new LenskitConfiguration();
        config.bind(EventDAO.class).to(dao);
        return config;
    }

    @Before
    public void createDAOFactory() throws FileNotFoundException {
View Full Code Here

        rs.add(Ratings.make(6, 8, 2));
        rs.add(Ratings.make(1, 9, 3));
        rs.add(Ratings.make(3, 9, 4));

        LenskitConfiguration config = new LenskitConfiguration();
        config.bind(EventDAO.class).to(EventCollectionDAO.create(rs));
        config.bind(ItemScorer.class).to(WeightedSlopeOneItemScorer.class);
        config.bind(PreferenceDomain.class).to(new PreferenceDomainBuilder(1, 5)
                                                       .setPrecision(1)
                                                       .build());
        ItemScorer predictor = LenskitRecommenderEngine.build(config)
View Full Code Here

        rs.add(Ratings.make(1, 9, 3));
        rs.add(Ratings.make(3, 9, 4));

        LenskitConfiguration config = new LenskitConfiguration();
        config.bind(EventDAO.class).to(EventCollectionDAO.create(rs));
        config.bind(ItemScorer.class).to(WeightedSlopeOneItemScorer.class);
        config.bind(PreferenceDomain.class).to(new PreferenceDomainBuilder(1, 5)
                                                       .setPrecision(1)
                                                       .build());
        ItemScorer predictor = LenskitRecommenderEngine.build(config)
                                                       .createRecommender()
View Full Code Here

        rs.add(Ratings.make(3, 9, 4));

        LenskitConfiguration config = new LenskitConfiguration();
        config.bind(EventDAO.class).to(EventCollectionDAO.create(rs));
        config.bind(ItemScorer.class).to(WeightedSlopeOneItemScorer.class);
        config.bind(PreferenceDomain.class).to(new PreferenceDomainBuilder(1, 5)
                                                       .setPrecision(1)
                                                       .build());
        ItemScorer predictor = LenskitRecommenderEngine.build(config)
                                                       .createRecommender()
                                                       .getItemScorer();
View Full Code Here

        rs.add(Ratings.make(1, 7, 4));
        rs.add(Ratings.make(2, 7, 4));
        rs.add(Ratings.make(3, 7, 1.5));

        LenskitConfiguration config = new LenskitConfiguration();
        config.bind(EventDAO.class).to(EventCollectionDAO.create(rs));
        config.bind(ItemScorer.class).to(WeightedSlopeOneItemScorer.class);
        config.bind(PreferenceDomain.class).to(new PreferenceDomainBuilder(1, 5)
                                                       .setPrecision(1)
                                                       .build());
        ItemScorer predictor = LenskitRecommenderEngine.build(config)
View Full Code Here

        rs.add(Ratings.make(2, 7, 4));
        rs.add(Ratings.make(3, 7, 1.5));

        LenskitConfiguration config = new LenskitConfiguration();
        config.bind(EventDAO.class).to(EventCollectionDAO.create(rs));
        config.bind(ItemScorer.class).to(WeightedSlopeOneItemScorer.class);
        config.bind(PreferenceDomain.class).to(new PreferenceDomainBuilder(1, 5)
                                                       .setPrecision(1)
                                                       .build());
        ItemScorer predictor = LenskitRecommenderEngine.build(config)
                                                       .createRecommender()
View Full Code Here

        rs.add(Ratings.make(3, 7, 1.5));

        LenskitConfiguration config = new LenskitConfiguration();
        config.bind(EventDAO.class).to(EventCollectionDAO.create(rs));
        config.bind(ItemScorer.class).to(WeightedSlopeOneItemScorer.class);
        config.bind(PreferenceDomain.class).to(new PreferenceDomainBuilder(1, 5)
                                                       .setPrecision(1)
                                                       .build());
        ItemScorer predictor = LenskitRecommenderEngine.build(config)
                                                       .createRecommender()
                                                       .getItemScorer();
View Full Code Here

        rs.add(Ratings.make(8, 4, 5));
        rs.add(Ratings.make(8, 5, 4));
        EventDAO dao = new EventCollectionDAO(rs);

        LenskitConfiguration config = new LenskitConfiguration();
        config.bind(EventDAO.class).to(dao);
        config.bind(ItemItemModel.class).toProvider(NormalizingItemItemModelBuilder.class);
        config.bind(ItemScorer.class).to(ItemItemScorer.class);
        config.bind(GlobalItemScorer.class).to(ItemItemGlobalScorer.class);
        // this is the default
//        factory.setComponent(UserVectorNormalizer.class, VectorNormalizer.class,
View Full Code Here

        rs.add(Ratings.make(8, 5, 4));
        EventDAO dao = new EventCollectionDAO(rs);

        LenskitConfiguration config = new LenskitConfiguration();
        config.bind(EventDAO.class).to(dao);
        config.bind(ItemItemModel.class).toProvider(NormalizingItemItemModelBuilder.class);
        config.bind(ItemScorer.class).to(ItemItemScorer.class);
        config.bind(GlobalItemScorer.class).to(ItemItemGlobalScorer.class);
        // this is the default
//        factory.setComponent(UserVectorNormalizer.class, VectorNormalizer.class,
//                             IdentityVectorNormalizer.class);
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.