Package org.encog.neural.networks.training.propagation.back

Examples of org.encog.neural.networks.training.propagation.back.Backpropagation.iteration()


    rprop2.iteration();
    rprop2.iteration();
    TrainingContinuation state = rprop2.pause();
    rprop2 = new Backpropagation(network2,trainingData,0.4,0.4);
    rprop2.resume(state);
    rprop2.iteration();
    rprop2.iteration();
   
    // verify weights are the same
    double[] weights1 = NetworkCODEC.networkToArray(network1);
    double[] weights2 = NetworkCODEC.networkToArray(network2);
View Full Code Here


    rprop2.iteration();
    TrainingContinuation state = rprop2.pause();
    rprop2 = new Backpropagation(network2,trainingData,0.4,0.4);
    rprop2.resume(state);
    rprop2.iteration();
    rprop2.iteration();
   
    // verify weights are the same
    double[] weights1 = NetworkCODEC.networkToArray(network1);
    double[] weights2 = NetworkCODEC.networkToArray(network2);
   
View Full Code Here

    BasicNetwork network2 = NetworkUtil.createXORNetworkUntrained();
    MLDataSet trainingData = new BasicMLDataSet(XOR.XOR_INPUT,XOR.XOR_IDEAL);
   
    // train network 1, no continue
    Backpropagation rprop1 = new Backpropagation(network1,trainingData,0.4,0.4);
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
   
    // train network 2, continue
View Full Code Here

    MLDataSet trainingData = new BasicMLDataSet(XOR.XOR_INPUT,XOR.XOR_IDEAL);
   
    // train network 1, no continue
    Backpropagation rprop1 = new Backpropagation(network1,trainingData,0.4,0.4);
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
   
    // train network 2, continue
    Backpropagation rprop2 = new Backpropagation(network2,trainingData,0.4,0.4);
View Full Code Here

   
    // train network 1, no continue
    Backpropagation rprop1 = new Backpropagation(network1,trainingData,0.4,0.4);
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
   
    // train network 2, continue
    Backpropagation rprop2 = new Backpropagation(network2,trainingData,0.4,0.4);
    rprop2.iteration();
View Full Code Here

    // train network 1, no continue
    Backpropagation rprop1 = new Backpropagation(network1,trainingData,0.4,0.4);
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
    rprop1.iteration();
   
    // train network 2, continue
    Backpropagation rprop2 = new Backpropagation(network2,trainingData,0.4,0.4);
    rprop2.iteration();
    rprop2.iteration();
View Full Code Here

    rprop1.iteration();
    rprop1.iteration();
   
    // train network 2, continue
    Backpropagation rprop2 = new Backpropagation(network2,trainingData,0.4,0.4);
    rprop2.iteration();
    rprop2.iteration();
    TrainingContinuation state = rprop2.pause();
    rprop2 = new Backpropagation(network2,trainingData,0.4,0.4);
    rprop2.resume(state);
    rprop2.iteration();
View Full Code Here

    rprop1.iteration();
   
    // train network 2, continue
    Backpropagation rprop2 = new Backpropagation(network2,trainingData,0.4,0.4);
    rprop2.iteration();
    rprop2.iteration();
    TrainingContinuation state = rprop2.pause();
    rprop2 = new Backpropagation(network2,trainingData,0.4,0.4);
    rprop2.resume(state);
    rprop2.iteration();
    rprop2.iteration();
View Full Code Here

    rprop2.iteration();
    rprop2.iteration();
    TrainingContinuation state = rprop2.pause();
    rprop2 = new Backpropagation(network2,trainingData,0.4,0.4);
    rprop2.resume(state);
    rprop2.iteration();
    rprop2.iteration();
   
    // verify weights are the same
    double[] weights1 = NetworkCODEC.networkToArray(network1);
    double[] weights2 = NetworkCODEC.networkToArray(network2);
View Full Code Here

    rprop2.iteration();
    TrainingContinuation state = rprop2.pause();
    rprop2 = new Backpropagation(network2,trainingData,0.4,0.4);
    rprop2.resume(state);
    rprop2.iteration();
    rprop2.iteration();
   
    // verify weights are the same
    double[] weights1 = NetworkCODEC.networkToArray(network1);
    double[] weights2 = NetworkCODEC.networkToArray(network2);
   
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.