Package org.encog.mathutil.error

Examples of org.encog.mathutil.error.ErrorCalculation.calculate()


      errorCalculation.updateError(output.getData(), pair.getIdeal()
          .getData(),pair.getSignificance());
    }

    // set the global error
    setError(errorCalculation.calculate());
  }

  /**
   * {@inheritDoc}
   */
 
View Full Code Here


    for (int i = 0; i < data.getRecordCount(); i++) {
      data.getRecord(i, pair);
      compute(pair.getInputArray(), actual);
      errorCalculation.updateError(actual, pair.getIdealArray(), pair.getSignificance());
    }
    return errorCalculation.calculate();
  }

  /**
   * Clear any connection limits.
   */
 
View Full Code Here

      final MLData out2 = this.network.computeOutstar(out);
      error.updateError(out2.getData(), pair.getIdeal().getData(), pair.getSignificance());
    }

    setError(error.calculate());
  }

  /**
   * {@inheritDoc}
   */
 
View Full Code Here

    for (final MLDataPair pair : data) {
      final MLData actual = method.compute(pair.getInput());
      errorCalculation.updateError(actual.getData(), pair.getIdeal()
          .getData(),pair.getSignificance());
    }
    return errorCalculation.calculate();
  }

  public static void saveCSV(File targetFile, CSVFormat format, MLDataSet set) {
    try {
      FileWriter outFile = new FileWriter(targetFile);
View Full Code Here

    for (final MLDataPair pair : data) {
      final MLData actual = method.compute(pair.getInput());
      errorCalculation.updateError(actual.getData(), pair.getIdeal()
          .getData(),pair.getSignificance());
    }
    return errorCalculation.calculate();
  }
}
View Full Code Here

      for (int i = 0; i < prob.l; i++) {
        final double ideal = prob.y[i];
        final double actual = target[i];
        error.updateError(actual, ideal);
      }
      return error.calculate();
    } else {
      for (int i = 0; i < prob.l; i++) {
        if (target[i] == prob.y[i]) {
          ++totalCorrect;
        }
View Full Code Here

    for (int i = 0; i < data.getRecordCount(); i++) {
      data.getRecord(i, pair);
      compute(pair.getInputArray(), actual);
      errorCalculation.updateError(actual, pair.getIdealArray(), pair.getSignificance());
    }
    return errorCalculation.calculate();
  }

  /**
   * Clear any connection limits.
   */
 
View Full Code Here

      final MLData out2 = this.network.computeOutstar(out);
      error.updateError(out2.getData(), pair.getIdeal().getData(), pair.getSignificance());
    }

    setError(error.calculate());
  }

  /**
   * {@inheritDoc}
   */
 
View Full Code Here

        calculateNeuronGradient(neuron);
      }
    }

    // Set the overall error.
    setError(errorCalc.calculate());
   
    // Learn for all data.
    learn();   
  }
 
View Full Code Here

    if( lastLearn>0 ) {
      learn();
    }

    // Set the overall error.
    setError(errorCalc.calculate());
   
  }
 
  /**
   * Learn for the entire network.
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.