Package org.apache.mahout.math

Examples of org.apache.mahout.math.Matrix.numRows()


    Matrix similarityMatrix = MathHelper.readMatrix(conf, new Path(outputDir.getAbsolutePath(), "part-r-00000"), 3, 3);

    assertNotNull(similarityMatrix);
    assertEquals(3, similarityMatrix.numCols());
    assertEquals(3, similarityMatrix.numRows());

    assertEquals(0.0, similarityMatrix.get(0, 0), EPSILON);
    assertEquals(0.5, similarityMatrix.get(0, 1), EPSILON);
    assertEquals(0.0, similarityMatrix.get(0, 2), EPSILON);
View Full Code Here


    Matrix similarityMatrix = MathHelper.readMatrix(conf, new Path(outputDir.getAbsolutePath(), "part-r-00000"), 3, 3);

    assertNotNull(similarityMatrix);
    assertEquals(3, similarityMatrix.numCols());
    assertEquals(3, similarityMatrix.numRows());

    assertEquals(0.0, similarityMatrix.get(0, 0), EPSILON);
    assertEquals(0.5, similarityMatrix.get(0, 1), EPSILON);
    assertEquals(0.0, similarityMatrix.get(0, 2), EPSILON);
View Full Code Here

    for(int row = 0; row < eigenVectors.numRows(); row++) {
      Vector oldEigen = eigenVectors.viewRow(row);
      if(oldEigen == null) {
        break;
      }
      for(int newRow = 0; newRow < eigenVectors2.numRows(); newRow++) {
        Vector newEigen = eigenVectors2.viewRow(newRow);
        if(newEigen != null) {
          if(oldEigen.dot(newEigen) > 0.9) {
            oldEigensFound.add(row);
            break;
View Full Code Here

      weightsPerFeature = VectorWritable.readVector(in);
      weightsPerLabel = VectorWritable.readVector(in);
      perLabelThetaNormalizer = VectorWritable.readVector(in);

      weightsPerLabelAndFeature = new SparseMatrix(weightsPerLabel.size(), weightsPerFeature.size() );
      for (int label = 0; label < weightsPerLabelAndFeature.numRows(); label++) {
        weightsPerLabelAndFeature.assignRow(label, VectorWritable.readVector(in));
      }
    } finally {
      Closeables.closeQuietly(in);
    }
View Full Code Here

        IntWritable.class, VectorWritable.class);
    try {
      IntWritable key = new IntWritable();
      VectorWritable value = new VectorWritable();
     
      for (int row = 0; row < sData.numRows(); row++) {
        key.set(row);
        value.set(sData.viewRow(row));
        writer.append(key, value);
      }
    } finally {
View Full Code Here

    DoubleMatrix2D eigenVects = decomp.getV();
    DoubleMatrix1D eigenVals = decomp.getRealEigenvalues();
    endTime(TimingSection.TRIDIAG_DECOMP);
    startTime(TimingSection.FINAL_EIGEN_CREATE);

    for (int i = 0; i < basis.numRows() - 1; i++) {
      Vector realEigen = new DenseVector(corpus.numCols());
      // the eigenvectors live as columns of V, in reverse order.  Weird but true.
      DoubleMatrix1D ejCol = eigenVects.viewColumn(basis.numRows() - i - 1);
      for (int j = 0; j < ejCol.size(); j++) {
        double d = ejCol.getQuick(j);
View Full Code Here

    startTime(TimingSection.FINAL_EIGEN_CREATE);

    for (int i = 0; i < basis.numRows() - 1; i++) {
      Vector realEigen = new DenseVector(corpus.numCols());
      // the eigenvectors live as columns of V, in reverse order.  Weird but true.
      DoubleMatrix1D ejCol = eigenVects.viewColumn(basis.numRows() - i - 1);
      for (int j = 0; j < ejCol.size(); j++) {
        double d = ejCol.getQuick(j);
        realEigen.assign(basis.getRow(j), new PlusMult(d));
      }
      realEigen = realEigen.normalize();
View Full Code Here

    int desiredRank = 30;
    Matrix eigenVectors = new DenseMatrix(desiredRank, corpus.numCols());
    List<Double> eigenValues = new ArrayList<Double>();
    solver.solve(corpus, desiredRank, eigenVectors, eigenValues, symmetric);
    assertOrthonormal(eigenVectors);
    assertEigen(eigenVectors, corpus, eigenVectors.numRows() / 2, 0.01, symmetric);
  }

  @Test
  public void testDistributedLanczosSolver() throws Exception {
    doTestDistributedLanczosSolver(true);
View Full Code Here

      }
    }, true, new Path(baseTmpDirPath, "distMatrix/part-00000"), fs, conf);

    DistributedRowMatrix distMatrix = new DistributedRowMatrix(new Path(baseTmpDirPath, "distMatrix"),
                                                               new Path(baseTmpDirPath, "tmpOut"),
                                                               m.numRows(),
                                                               m.numCols());
    distMatrix.configure(new JobConf(conf));

    return distMatrix;
  }
View Full Code Here

    Matrix similarityMatrix =
      MathHelper.readEntries(fs, conf, new Path(outputDir.getAbsolutePath(), "part-r-00000"), 3, 3);
   
    assertNotNull(similarityMatrix);
    assertEquals(3, similarityMatrix.numCols());
    assertEquals(3, similarityMatrix.numRows());

    assertEquals(1.0, similarityMatrix.get(0, 0), EPSILON);
    assertEquals(1.0, similarityMatrix.get(1, 1), EPSILON);
    assertEquals(1.0, similarityMatrix.get(2, 2), EPSILON);
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.