Package org.apache.mahout.math

Examples of org.apache.mahout.math.DenseVector.dot()


    for (Vector.Element element : data.all()) {
      element.set(gen.nextDouble() < 0.3 ? 1 : 0);
    }

    double p = 1 / (1 + Math.exp(1.5 - data.dot(beta)));
    int target = 0;
    if (gen.nextDouble() < p) {
      target = 1;
    }
    return new AdaptiveLogisticRegression.TrainingExample(i, null, target, data);
View Full Code Here


    userIDs = dataModel.getUserIDs();
    while (userIDs.hasNext()) {
      long userID = userIDs.nextLong();
      Vector userVector = new DenseVector(factorization.getUserFeatures(userID));
      double regularization = userVector.dot(userVector);
      sum += regularization;
    }

    itemIDs = dataModel.getItemIDs();
    while (itemIDs.hasNext()) {
View Full Code Here

    itemIDs = dataModel.getItemIDs();
    while (itemIDs.hasNext()) {
      long itemID = itemIDs.nextLong();
      Vector itemVector = new DenseVector(factorization.getUserFeatures(itemID));
      double regularization = itemVector.dot(itemVector);
      sum += regularization;
    }

    double rmse = Math.sqrt(avg.getAverage());
    double loss = avg.getAverage() / 2 + lambda / 2 * sum;
 
View Full Code Here

    userIDs = dataModel.getUserIDs();
    while (userIDs.hasNext()) {
      long userID = userIDs.nextLong();
      Vector userVector = new DenseVector(factorization.getUserFeatures(userID));
      double regularization=userVector.dot(userVector);
      sum += regularization;
    }

    itemIDs = dataModel.getItemIDs();
    while (itemIDs.hasNext()) {
View Full Code Here

    itemIDs = dataModel.getItemIDs();
    while (itemIDs.hasNext()) {
      long itemID = itemIDs.nextLong();
      Vector itemVector = new DenseVector(factorization.getUserFeatures(itemID));
      double regularization = itemVector.dot(itemVector);
      sum += regularization;
    }

    double rmse = Math.sqrt(avg.getAverage());
    double loss = avg.getAverage() / 2 + lambda / 2 * sum;
 
View Full Code Here

    w.addToVector("and", v3);
    w.addToVector("more", v3);
    assertEquals(0, v3.minus(v2).norm(1), 0);

    // moreover, the locations set in the unweighted case should be the same as in the weighted case
    assertEquals(v3.zSum(), v3.dot(v1), 0);
  }

  @Test
  public void testAsString() {
    Locale.setDefault(Locale.ENGLISH);
View Full Code Here

        state.setFirstPass(false);
        if (DEBUG) {
          if (previousEigen == null) {
            previousEigen = currentEigen.clone();
          } else {
            double dot = currentEigen.dot(previousEigen);
            if (dot > 0.0) {
              dot /= currentEigen.norm(2) * previousEigen.norm(2);
            }
           // log.info("Current pass * previous pass = {}", dot);
          }
View Full Code Here

    Vector beta = new DenseVector(new double[]{1, -1, 0, 0.5, -0.5});
    Random gen = RandomUtils.getRandom();
    for (int i = 0; i < n; i++) {
      Vector x = randomVector(gen, 5);

      int target = gen.nextDouble() < beta.dot(x) ? 1 : 0;
      olr.train(target, x);
    }
  }

  private static Vector randomVector(final Random gen, int n) {
View Full Code Here

    for (Vector.Element element : data) {
      element.set(gen.nextDouble() < 0.3 ? 1 : 0);
    }

    double p = 1 / (1 + Math.exp(1.5 - data.dot(beta)));
    int target = 0;
    if (gen.nextDouble() < p) {
      target = 1;
    }
    return new AdaptiveLogisticRegression.TrainingExample(i, null, target, data);
View Full Code Here

    w.addToVector("and", v3);
    w.addToVector("more", v3);
    assertEquals(0, v3.minus(v2).norm(1), 0);

    // moreover, the locations set in the unweighted case should be the same as in the weighted case
    assertEquals(v3.zSum(), v3.dot(v1), 0);
  }

  @Test
  public void testAsString() {
    Locale.setDefault(Locale.ENGLISH);
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.