Package org.apache.mahout.cf.taste.recommender

Examples of org.apache.mahout.cf.taste.recommender.Recommender.recommend()


public final class ItemUserAverageRecommenderTest extends TasteTestCase {

  public void testRecommender() throws Exception {
    Recommender recommender = new ItemUserAverageRecommender(getDataModel());
    List<RecommendedItem> recommended = recommender.recommend(1, 1);
    assertNotNull(recommended);
    assertEquals(1, recommended.size());
    RecommendedItem firstRecommended = recommended.get(0);
    assertEquals(2, firstRecommended.getItemID());
    assertEquals(0.35151517f, firstRecommended.getValue());
View Full Code Here


                    {0.4, 0.9},
            });
    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> recommended = recommender.recommend(1, 1);
    assertNotNull(recommended);
    assertEquals(0, recommended.size());
    recommender.refresh(null);
    assertNotNull(recommended);
    assertEquals(0, recommended.size());
View Full Code Here

            });

    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> fewRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> moreRecommended = recommender.recommend(1, 4);
    for (int i = 0; i < fewRecommended.size(); i++) {
      assertEquals(fewRecommended.get(i).getItemID(), moreRecommended.get(i).getItemID());
    }
    recommender.refresh(null);
View Full Code Here

    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> fewRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> moreRecommended = recommender.recommend(1, 4);
    for (int i = 0; i < fewRecommended.size(); i++) {
      assertEquals(fewRecommended.get(i).getItemID(), moreRecommended.get(i).getItemID());
    }
    recommender.refresh(null);
    for (int i = 0; i < fewRecommended.size(); i++) {
View Full Code Here

/** <p>Tests {@link SlopeOneRecommender}.</p> */
public final class SlopeOneRecommenderTest extends TasteTestCase {

  public void testRecommender() throws Exception {
    Recommender recommender = buildRecommender();
    List<RecommendedItem> recommended = recommender.recommend(1, 1);
    assertNotNull(recommended);
    assertEquals(1, recommended.size());
    RecommendedItem firstRecommended = recommended.get(0);
    assertEquals(2, firstRecommended.getItemID());
    assertEquals(0.34803885284992736, firstRecommended.getValue(), EPSILON);
View Full Code Here

            });

    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> originalRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> rescoredRecommended =
        recommender.recommend(1, 2, new ReversingRescorer<Long>());
    assertNotNull(originalRecommended);
    assertNotNull(rescoredRecommended);
    assertEquals(2, originalRecommended.size());
View Full Code Here

                    {0.1, 0.4, 0.5, 0.8, 0.9, 1.0},
                    {0.2, 0.3, 0.6, 0.7, 0.1, 0.2},
            });

    Recommender recommender = new SlopeOneRecommender(dataModel);
    List<RecommendedItem> fewRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> moreRecommended = recommender.recommend(1, 4);
    for (int i = 0; i < fewRecommended.size(); i++) {
      assertEquals(fewRecommended.get(i).getItemID(), moreRecommended.get(i).getItemID());
    }
    recommender.refresh(null);
View Full Code Here

                    {0.2, 0.3, 0.6, 0.7, 0.1, 0.2},
            });

    Recommender recommender = new SlopeOneRecommender(dataModel);
    List<RecommendedItem> fewRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> moreRecommended = recommender.recommend(1, 4);
    for (int i = 0; i < fewRecommended.size(); i++) {
      assertEquals(fewRecommended.get(i).getItemID(), moreRecommended.get(i).getItemID());
    }
    recommender.refresh(null);
    for (int i = 0; i < fewRecommended.size(); i++) {
View Full Code Here

    UserSimilarity similarity = new PearsonCorrelationSimilarity(dataModel);
    ClusterSimilarity clusterSimilarity = new FarthestNeighborClusterSimilarity(similarity);
    Recommender recommender = new TreeClusteringRecommender(dataModel, clusterSimilarity, 2);
    List<RecommendedItem> originalRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> rescoredRecommended =
        recommender.recommend(1, 2, new ReversingRescorer<Long>());
    assertNotNull(originalRecommended);
    assertNotNull(rescoredRecommended);
    assertEquals(2, originalRecommended.size());
    assertEquals(2, rescoredRecommended.size());
    assertEquals(originalRecommended.get(0).getItemID(), rescoredRecommended.get(1).getItemID());
View Full Code Here

                    {0.2, 0.3, 0.3, 0.6},
                    {0.4, 0.4, 0.5, 0.9},
            });

    Recommender recommender = new SlopeOneRecommender(dataModel);
    List<RecommendedItem> originalRecommended = recommender.recommend(1, 2);
    List<RecommendedItem> rescoredRecommended =
        recommender.recommend(1, 2, new ReversingRescorer<Long>());
    assertNotNull(originalRecommended);
    assertNotNull(rescoredRecommended);
    assertEquals(2, originalRecommended.size());
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.