orld.wolfram.com/HyperbolicTangent.html" TARGET="_top"> hyperbolic tangent of this complex number. Implements the formula:
tan(a + bi) = sinh(2a)/(cosh(2a)+cos(2b)) + [sin(2b)/(cosh(2a)+cos(2b))]i
where the (real) functions on the right-hand side are {@link FastMath#sin}, {@link FastMath#cos}, {@link FastMath#cosh} and{@link FastMath#sinh}.
Returns {@link Complex#NaN} if either real or imaginary part of theinput argument is {@code NaN}.
Infinite values in real or imaginary parts of the input may result in infinite or NaN values returned in parts of the result.
Examples: tanh(a ± INFINITY i) = NaN + NaN i tanh(±INFINITY + bi) = ±1 + 0 i tanh(±INFINITY ± INFINITY i) = NaN + NaN i tanh(0 + (π/2)i) = NaN + INFINITY i
@return the hyperbolic tangent of {@code this}.
@since 1.2