Examples of iteration()


Examples of org.encog.neural.networks.training.propagation.back.Backpropagation.iteration()

    trainMain.addStrategy(new HybridStrategy(trainAlt));
    trainMain.addStrategy(stop);

    int epoch = 0;
    while (!stop.shouldStop()) {
      trainMain.iteration();
      System.out.println("Training " + what + ", Epoch #" + epoch
          + " Error:" + trainMain.getError());
      epoch++;
    }
    return trainMain.getError();
View Full Code Here

Examples of org.encog.neural.networks.training.propagation.back.Backpropagation.iteration()

      //Propagation train = new ResilientPropagation((ContainsFlat)method, trainingData);
      ((Propagation)train).fixFlatSpot(true);
     
      int iteration = 0;
      do {
        train.iteration();
       
        iteration++;
      } while( train.getError()>0.01 );
      count[i] = iteration;
      System.out.println("Begin Try #" + (i+1) + ", took " + iteration + " iterations.");     
View Full Code Here

Examples of org.encog.neural.networks.training.propagation.back.Backpropagation.iteration()

    Stopwatch sw = new Stopwatch();
    sw.start();
    // run epoch of learning procedure
    for (int i = 0; i < ITERATIONS; i++) {
      train.iteration();
    }
    sw.stop();

    return sw.getElapsedMilliseconds();
  }
View Full Code Here

Examples of org.encog.neural.networks.training.propagation.resilient.ResilientPropagation.iteration()

    private int trainNeuralNetwork() {
        final Train train = new ResilientPropagation(network, trainingData);

        int epoch = 1;
        do {
            train.iteration();
            //System.out.println("Epoch #" + epoch + " Error: " + train.getError());
            epoch++;
            if (epoch > 500) {
                return 1;
            }
View Full Code Here

Examples of org.encog.neural.networks.training.propagation.resilient.ResilientPropagation.iteration()

    ResilientPropagation rprop2 = new ResilientPropagation(net2,trainingSet);
   
    rprop1.iteration();
    rprop1.iteration();
   
    rprop2.iteration();
    rprop2.iteration();
   
    TrainingContinuation cont = rprop2.pause();
   
    ResilientPropagation rprop3 = new ResilientPropagation(net2,trainingSet);
View Full Code Here

Examples of org.encog.neural.networks.training.propagation.resilient.ResilientPropagation.iteration()

   
    rprop1.iteration();
    rprop1.iteration();
   
    rprop2.iteration();
    rprop2.iteration();
   
    TrainingContinuation cont = rprop2.pause();
   
    ResilientPropagation rprop3 = new ResilientPropagation(net2,trainingSet);
    rprop3.resume(cont);
View Full Code Here

Examples of org.encog.neural.networks.training.propagation.resilient.ResilientPropagation.iteration()

   
    ResilientPropagation rprop3 = new ResilientPropagation(net2,trainingSet);
    rprop3.resume(cont);
   
    rprop1.iteration();
    rprop3.iteration();
   
   
    for(int i=0;i<net1.getFlat().getWeights().length;i++) {
      Assert.assertEquals(net1.getFlat().getWeights()[i], net2.getFlat().getWeights()[i],0.0001);
    }
View Full Code Here

Examples of org.encog.neural.networks.training.propagation.resilient.ResilientPropagation.iteration()

    ResilientPropagation rprop2 = new ResilientPropagation(net2,trainingSet);
   
    rprop1.iteration();
    rprop1.iteration();
   
    rprop2.iteration();
    rprop2.iteration();
   
    TrainingContinuation cont = rprop2.pause();
   
    EncogDirectoryPersistence.saveObject(EG_FILENAME, cont);
View Full Code Here

Examples of org.encog.neural.networks.training.propagation.resilient.ResilientPropagation.iteration()

   
    rprop1.iteration();
    rprop1.iteration();
   
    rprop2.iteration();
    rprop2.iteration();
   
    TrainingContinuation cont = rprop2.pause();
   
    EncogDirectoryPersistence.saveObject(EG_FILENAME, cont);
    TrainingContinuation cont2 = (TrainingContinuation)EncogDirectoryPersistence.loadObject(EG_FILENAME);
View Full Code Here

Examples of org.encog.neural.networks.training.propagation.resilient.ResilientPropagation.iteration()

   
    ResilientPropagation rprop3 = new ResilientPropagation(net2,trainingSet);
    rprop3.resume(cont2);
   
    rprop1.iteration();
    rprop3.iteration();
   
   
    for(int i=0;i<net1.getFlat().getWeights().length;i++) {
      Assert.assertEquals(net1.getFlat().getWeights()[i], net2.getFlat().getWeights()[i],0.0001);
    }
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.