Examples of instance()


Examples of weka.core.Instances.instance()

    // set all targets to missing
    List<String> fieldsToForecast = AbstractForecaster.stringToList(forecaster
        .getFieldsToForecast());
    for (int i = 0; i < overlay.numInstances(); i++) {
      Instance current = overlay.instance(i);
      for (String target : fieldsToForecast) {
        current.setValue(overlay.attribute(target), Utils.missingValue());
      }
    }
View Full Code Here

Examples of weka.core.Instances.instance()

      /*
       * // don't push the first instance into the filters because this one //
       * has already been pushed in earlier.
       */
      for (int i = 0; i < missingReplaced.numInstances(); i++) {
        applyFilters(missingReplaced.instance(i), false, false);
      }
      m_missingBuffer = new Instances(m_primedInput, 0);
      // m_previousPrimeInstance = inst;
    } else if (!wasBuffered) {
      applyFilters(inst, false, false);
View Full Code Here

Examples of weka.core.Instances.instance()

          .replaceMissing(m_missingBuffer, m_fieldsToForecast,
              m_lagMaker.getTimeStampField(), false,
              m_lagMaker.getPeriodicity(), m_lagMaker.getSkipEntries());

      for (int i = 0; i < m_missingBuffer.numInstances(); i++) {
        applyFilters(missingReplaced.instance(i), false, false);
      }

      for (PrintStream p : progress) {
        p.println("WARNING: priming data contained missing target/date values that could "
            + "not be interpolated/replaced. Forecasting performance may be "
View Full Code Here

Examples of weka.core.Instances.instance()

    m_forecastingStatus = Status.BUSY;
    processInstance(null, true);

    for (int i = 0; i < data.numInstances(); i++) {
      processInstance(data.instance(i), false);
    }

    processInstance(null, false); // finished

    // generate forecast
View Full Code Here

Examples of weka.core.Instances.instance()

       * weighted average over all one-vs-all binary classification problems
       * that can be derived from the multiclass problem, where weights
       * correspond to class prior probabilities. */
      double[] classProps = new double[data.numClasses()];
      for ( int i = 0; i < data.numInstances(); i++ )
        classProps[ (int) data.instance(i).classValue() ] += data.instance(i).weight();
      Utils.normalize(classProps);

      double[][] aucScore = new double[classifiers.length][numRuns];
      double[][] accyScore = new double[classifiers.length][numRuns];
      double[][] timeScore = new double[classifiers.length][numRuns];
View Full Code Here

Examples of weka.core.Instances.instance()

       * weighted average over all one-vs-all binary classification problems
       * that can be derived from the multiclass problem, where weights
       * correspond to class prior probabilities. */
      double[] classProps = new double[data.numClasses()];
      for ( int i = 0; i < data.numInstances(); i++ )
        classProps[ (int) data.instance(i).classValue() ] += data.instance(i).weight();
      Utils.normalize(classProps);

      double[][] aucScore = new double[classifiers.length][numRuns];
      double[][] accyScore = new double[classifiers.length][numRuns];
      double[][] timeScore = new double[classifiers.length][numRuns];
View Full Code Here

Examples of weka.core.Instances.instance()

          if(!m_DataBaseConnection.isConnected())
              connectToDatabase();
          setWriteMode(WRITE);
          writeStructure();
          for(int i = 0; i < instances.numInstances(); i++){
            writeInstance(instances.instance(i));
          }
          m_DataBaseConnection.disconnectFromDatabase();
          setWriteMode(WAIT);
          resetStructure();
          m_count = 1;
View Full Code Here

Examples of weka.core.Instances.instance()

      }
      String[] options = weka.core.Utils.splitOptions("-p 0");
      J48 cls = (J48)weka.core.SerializationHelper.read(modelfile);
      cls.setOptions(options);
      for(int i = 0; i < data.numInstances(); i++){
        double pred = cls.classifyInstance(data.instance(i));
        ClusterClass clusClass = ClusterClass.valueOf(
            data.classAttribute().value((int)pred).toUpperCase());
        if(!retval.containsKey(clusClass)){
          retval.put(clusClass, new ArrayList<StoredDomainCluster>());
        }
View Full Code Here

Examples of weka.core.Instances.instance()

    Attribute groupID = new Attribute("groupID", (FastVector) null);
   
    DataSource source = new DataSource("testMe.arff");
    Instances instances = source.getDataSet();
    //System.out.println(instances);
    System.out.println(instances.instance(0));
   
       
    Enumeration enu = instances.enumerateInstances();
    while(enu.hasMoreElements())
    {
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.