Examples of destroyToSampleMatrix()


Examples of de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix.destroyToSampleMatrix()

      deltas.put(id, delta);
      covmaker.put(delta);
    }
    // Finalize covariance matrix:
    Vector mean = covmaker.getMeanVector();
    Matrix cmati = covmaker.destroyToSampleMatrix().inverse();

    DoubleMinMax minmax = new DoubleMinMax();
    WritableDataStore<Double> scores = DataStoreUtil.makeStorage(attributes.getDBIDs(), DataStoreFactory.HINT_STATIC, Double.class);
    for(DBID id : attributes.iterDBIDs()) {
      Vector temp = deltas.get(id).minus(mean);
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix.destroyToSampleMatrix()

      deltas.put(id, delta);
      covmaker.put(delta);
    }
    // Finalize covariance matrix:
    Vector mean = covmaker.getMeanVector();
    Matrix cmati = covmaker.destroyToSampleMatrix().inverse();

    DoubleMinMax minmax = new DoubleMinMax();
    WritableDataStore<Double> scores = DataStoreUtil.makeStorage(attributes.getDBIDs(), DataStoreFactory.HINT_STATIC, Double.class);
    for(DBID id : attributes.iterDBIDs()) {
      Vector temp = deltas.get(id).minus(mean);
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix.destroyToSampleMatrix()

    }
    // Finalize covariance matrix, compute linear regression
    final double slope, inter;
    {
      double[] meanv = covm.getMeanVector().getArrayRef();
      Matrix fmat = covm.destroyToSampleMatrix();
      final double covxx = fmat.get(0, 0);
      final double covxy = fmat.get(0, 1);
      slope = covxy / covxx;
      inter = meanv[1] - slope * meanv[0];
    }
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix.destroyToSampleMatrix()

      deltas.put(id, delta);
      covmaker.put(delta);
    }
    // Finalize covariance matrix:
    Vector mean = covmaker.getMeanVector();
    Matrix cmati = covmaker.destroyToSampleMatrix().inverse();

    DoubleMinMax minmax = new DoubleMinMax();
    WritableDoubleDataStore scores = DataStoreUtil.makeDoubleStorage(attributes.getDBIDs(), DataStoreFactory.HINT_STATIC);
    for(DBID id : attributes.iterDBIDs()) {
      Vector temp = deltas.get(id).minus(mean);
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix.destroyToSampleMatrix()

    }
    // Finalize covariance matrix, compute linear regression
    final double slope, inter;
    {
      double[] meanv = covm.getMeanVector().getArrayRef();
      Matrix fmat = covm.destroyToSampleMatrix();
      final double covxx = fmat.get(0, 0);
      final double covxy = fmat.get(0, 1);
      slope = covxy / covxx;
      inter = meanv[1] - slope * meanv[0];
    }
View Full Code Here

Examples of de.lmu.ifi.dbs.elki.math.linearalgebra.CovarianceMatrix.destroyToSampleMatrix()

      deltas.put(id, delta);
      covmaker.put(delta);
    }
    // Finalize covariance matrix:
    Vector mean = covmaker.getMeanVector();
    Matrix cmati = covmaker.destroyToSampleMatrix().inverse();

    DoubleMinMax minmax = new DoubleMinMax();
    WritableDoubleDataStore scores = DataStoreUtil.makeDoubleStorage(attributes.getDBIDs(), DataStoreFactory.HINT_STATIC);
    for(DBID id : attributes.iterDBIDs()) {
      Vector temp = deltas.get(id).minus(mean);
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.