Examples of derivative()


Examples of cc.redberry.core.tensor.AbstractScalarFunction.derivative()

            AbstractScalarFunction func = (AbstractScalarFunction) target;
            Tensor der = getDerivative(func.getInnerTensor(), var);
            if (der == null)
                return null;
            if (isOne(der))
                return func.derivative();
            return new Product(func.derivative(), der);
        }
        //TODO get derivative ot derivative
        return null;
    }
View Full Code Here

Examples of cc.redberry.core.tensor.AbstractScalarFunction.derivative()

            Tensor der = getDerivative(func.getInnerTensor(), var);
            if (der == null)
                return null;
            if (isOne(der))
                return func.derivative();
            return new Product(func.derivative(), der);
        }
        //TODO get derivative ot derivative
        return null;
    }
View Full Code Here

Examples of cc.redberry.core.tensor.AbstractScalarFunction.derivative()

            AbstractScalarFunction func = (AbstractScalarFunction) target;
            Tensor der = getDerivative(func.getInnerTensor(), var);
            if (der == null)
                return null;
            if (isOne(der))
                return func.derivative();
            return new Product(func.derivative(), der);
        }
        //TODO get derivative ot derivative
        return null;
    }
View Full Code Here

Examples of cc.redberry.core.tensor.AbstractScalarFunction.derivative()

            Tensor der = getDerivative(func.getInnerTensor(), var);
            if (der == null)
                return null;
            if (isOne(der))
                return func.derivative();
            return new Product(func.derivative(), der);
        }
        //TODO get derivative ot derivative
        return null;
    }
View Full Code Here

Examples of cc.redberry.core.tensor.AbstractScalarFunction.derivative()

            AbstractScalarFunction func = (AbstractScalarFunction) target;
            Tensor der = getDerivative(func.getInnerTensor(), var);
            if (der == null)
                return null;
            if (isOne(der))
                return func.derivative();
            return new Product(func.derivative(), der);
        }
        return null;
    }
View Full Code Here

Examples of cc.redberry.core.tensor.AbstractScalarFunction.derivative()

            Tensor der = getDerivative(func.getInnerTensor(), var);
            if (der == null)
                return null;
            if (isOne(der))
                return func.derivative();
            return new Product(func.derivative(), der);
        }
        return null;
    }

    private static boolean isOne(Tensor t) {
View Full Code Here

Examples of com.neuralnetwork.shared.functions.IActivationFunction.derivative()

     */
    private void testDerivativeValue(final double input,
        final double expected) {
        LOGGER.debug("===== Sigmoid Derivative Test. =====");
        IActivationFunction f = new SigmoidFunction();
        double v = f.derivative(input);
        LOGGER.debug(" Input: " + input);
        LOGGER.debug(" Value: " + v);
        LOGGER.debug(" Expected: " + expected);
        assertEquals(v, expected , DELTA * Math.ulp(expected));
        LOGGER.debug("====================================");
View Full Code Here

Examples of com.neuralnetwork.shared.functions.LinearFunction.derivative()

  public final void testLinearFunction() {
    LinearFunction f = new LinearFunction();
    assertNotNull(f);
    for (int i = 0; i < NUM_ITER; i++) {
      assertEquals(f.activate(i), i, ACCUR * Math.ulp(i));
      assertEquals(f.derivative(i), 1, ACCUR * Math.ulp(i));
    }

    f.changeFunction(FunctionType.NULL);
   
    for (int i = 0; i < NUM_ITER; i++) {
View Full Code Here

Examples of com.neuralnetwork.shared.functions.LinearFunction.derivative()

    f.changeFunction(FunctionType.NULL);
   
    for (int i = 0; i < NUM_ITER; i++) {
      assertEquals(f.activate(i), 0, ACCUR * Math.ulp(i));
      assertEquals(f.derivative(i), 0, ACCUR * Math.ulp(i));
    }
  }

}
 
View Full Code Here

Examples of com.neuralnetwork.shared.functions.SigmoidFunction.derivative()

     */
    private void testDerivativeValue(final double input,
        final double expected) {
        LOGGER.debug("===== Sigmoid Derivative Test. =====");
        IActivationFunction f = new SigmoidFunction();
        double v = f.derivative(input);
        LOGGER.debug(" Input: " + input);
        LOGGER.debug(" Value: " + v);
        LOGGER.debug(" Expected: " + expected);
        assertEquals(v, expected , DELTA * Math.ulp(expected));
        LOGGER.debug("====================================");
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.