Package com.opengamma.analytics.financial.model.finitedifference

Examples of com.opengamma.analytics.financial.model.finitedifference.ThetaMethodFiniteDifference.solve()


    final PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients> db1 = new PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients>(pde1, initalCondition, lower, upper, grid);
    final PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients> db2 = new PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients>(pde2, initalCondition, lower, upper, grid);

    final ThetaMethodFiniteDifference thetaMethod = new ThetaMethodFiniteDifference(0.5, true);

    final PDEFullResults1D res1 = (PDEFullResults1D) thetaMethod.solve(db1);
    final PDEFullResults1D res2 = (PDEFullResults1D) thetaMethod.solve(db2);

    PDEUtilityTools.printSurface("State 1 density", res1);
    PDEUtilityTools.printSurface("State 2 density", res2);
  }
View Full Code Here


    final PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients> db2 = new PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients>(pde2, initalCondition, lower, upper, grid);

    final ThetaMethodFiniteDifference thetaMethod = new ThetaMethodFiniteDifference(0.5, true);

    final PDEFullResults1D res1 = (PDEFullResults1D) thetaMethod.solve(db1);
    final PDEFullResults1D res2 = (PDEFullResults1D) thetaMethod.solve(db2);

    PDEUtilityTools.printSurface("State 1 density", res1);
    PDEUtilityTools.printSurface("State 2 density", res2);
  }
View Full Code Here

    final MeshingFunction timeMesh = new ExponentialMeshing(0.0, maxT, nTimeSteps, timeMeshLambda);

    final MeshingFunction spaceMesh = new HyperbolicMeshing(minMoneyness, maxMoneyness, centreMoneyness, nStrikeSteps, strikeMeshBunching);
    final PDEGrid1D grid = new PDEGrid1D(timeMesh, spaceMesh);
    final Function1D<Double, Double> intCond = (new InitialConditionsProvider()).getForwardCallPut(isCall);
    final PDEFullResults1D res = (PDEFullResults1D) solver.solve(new PDE1DDataBundle<>(pde, intCond, lower, upper, grid));
    return res;
  }

  private PDEFullResults1D runForwardPDESolver(final ForwardCurve forwardCurve, final LocalVolatilitySurfaceStrike localVolatility,
      final boolean isCall, final double theta, final double maxT, final double maxAbsProxyDelta, final int nTimeSteps, final int nStrikeSteps,
View Full Code Here

    final MeshingFunction timeMesh = new DoubleExponentialMeshing(0, expiry, expiry / 2, nTimeNodes, timeMeshLambda, -timeMeshLambda);
    //keep the grid the same regardless of spot (useful for finite-difference)
    final MeshingFunction spaceMesh = new HyperbolicMeshing(0.0, maxFwd, fwdNodeCentre, nFwdNodes, spotMeshBunching);
    final PDEGrid1D grid = new PDEGrid1D(timeMesh, spaceMesh);
    final PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients> db = new PDE1DDataBundle<>(pde, payoff, lower, upper, grid);
    final PDEResults1D res = solver.solve(db);
    return res;
  }

  /**
   * Convert the results of running the forward PDE, which are forward option prices divided by the relevant forward, to an implied volatility
View Full Code Here

    final BoundaryCondition lower = new DirichletBoundaryCondition(0, 0);
    final BoundaryCondition upper = new NeumannBoundaryCondition(1.0, upperLevel, false);
    final MeshingFunction timeMesh = new ExponentialMeshing(0.0, EXPIRY, nTimeNodes, 6.0);
    final MeshingFunction spaceMesh = new HyperbolicMeshing(0, upperLevel, STRIKE, nSpotNodes, 0.05);
    final PDEGrid1D grid = new PDEGrid1D(timeMesh, spaceMesh);
    final PDEResults1D res = solver.solve(new PDE1DDataBundle<>(pde, payoff, lower, upper, grid));

    final int fwdIndex = grid.getLowerBoundIndexForSpace(forward);
    final double[] fwd = new double[4];
    final double[] vol = new double[4];
    for (int i = 0; i < 4; i++) {
View Full Code Here

    final MeshingFunction spaceMeshF = new HyperbolicMeshing(xL, xH, 1.0, 200, 0.001);
    final MeshingFunction timeMeshF = new ExponentialMeshing(0, t, 50, 4.0);
    final MeshingFunction timeMeshB = new DoubleExponentialMeshing(0, t, t / 2, 50, 2.0, -4.0);
    final PDEGrid1D grid = new PDEGrid1D(timeMeshF, spaceMeshF);
    PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients> dbF = new PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients>(pde, initialCond, lower, upper, grid);
    PDETerminalResults1D res = (PDETerminalResults1D) solver.solve(dbF);
    final double minK = Math.exp(-6 * rootT);
    final double maxK = Math.exp(6 * rootT);
    Map<Double, Double> vols = PDEUtilityTools.priceToImpliedVol(fwdCurve, t, res, minK, maxK, true);
    DoubleQuadraticInterpolator1D interpolator = Interpolator1DFactory.DOUBLE_QUADRATIC_INSTANCE;
    Interpolator1DDataBundle idb = interpolator.getDataBundle(vols);
View Full Code Here

      BoundaryCondition lowerB = new NeumannBoundaryCondition(isCall ? 0 : -1, sL, true);
      BoundaryCondition upperB = new NeumannBoundaryCondition(isCall ? 1 : 0, sH, false);

      Function1D<Double, Double> bkdIC = initialConProvider.getEuropeanPayoff(k, isCall);
      PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients> dbB = new PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients>(pdeB, bkdIC, lowerB, upperB, gridB);
      PDEResults1D resB = solver.solve(dbB);
      double price1 = resB.getFunctionValue(index);
      double price2 = resB.getFunctionValue(index + 1);
      double vol1 = BlackFormulaRepository.impliedVolatility(price1, s1, k, t, isCall);
      double vol2 = BlackFormulaRepository.impliedVolatility(price2, s2, k, t, isCall);
      double volBPDE = w * vol1 + (1 - w) * vol2;
 
View Full Code Here

    final double[] sNodes = grid.getSpaceNodes();

    //run the PDE solver backward to the dividend date
    // PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients> db1 = new PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients>(pde, initialCon, lower1, upper1, grid1);
    final PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients> db1 = new PDE1DDataBundle<>(pde, payoff, lower, upper, grid);
    final PDETerminalResults1D res = (PDETerminalResults1D) solver.solve(db1);

    final Interpolator1DDataBundle interpolDB = INTEPOLATOR1D.getDataBundle(sNodes, res.getTerminalResults());

    final double val = INTEPOLATOR1D.interpolate(interpolDB, lnFT);
    assertEquals(0.41491529, Math.sqrt(-2 * (val) / EXPIRY), 5e-4); //Number from backwardsPDETest
View Full Code Here

    final MeshingFunction timeMesh = new ExponentialMeshing(0.0, EXPIRY, 100, 0.0);
    final MeshingFunction spaceMesh = new ExponentialMeshing(yL, yH, 101, 0.0);

    final PDEGrid1D grid = new PDEGrid1D(timeMesh, spaceMesh);
    final PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients> db = new PDE1DDataBundle<>(pde, PURE_LOG_PAY_OFF, lower, upper, grid);
    final PDEResults1D res = solver.solve(db);

    final int n = res.getNumberSpaceNodes();

    final double val = res.getFunctionValue(n / 2);
    return val;
View Full Code Here

    final PDEGrid1D grid1 = new PDEGrid1D(timeMesh1, spaceMesh);
    final double[] sNodes1 = grid1.getSpaceNodes();

    //run the PDE solver backward to the dividend date
    final PDE1DDataBundle<ConvectionDiffusionPDE1DCoefficients> db1 = new PDE1DDataBundle<>(pde, initialCon, lower1, upper1, grid1);
    final PDETerminalResults1D res1 = (PDETerminalResults1D) solver.solve(db1);

    //Map the spot nodes after (in calendar time) the dividend payment to nodes before
    final int nSNodes = sNodes1.length;
    final double[] sNodes2 = new double[nSNodes];
    final double lnBeta = Math.log(1 - BETA);
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.