time = System.currentTimeMillis();
log.info("Growing a forest with m=1");
DecisionForest forestOne = forestBuilder.build(nbtrees, errorOne);
sumTimeOne += System.currentTimeMillis() - time;
double oobOne = ErrorEstimate.errorRate(trainLabels, errorOne.computePredictions(rng)); // oob error estimate when m = 1
// compute the test set error (Selection Error), and mean tree error (One Tree Error),
// using the lowest oob error forest
ForestPredictions testError = new ForestPredictions(dataSize, nblabels); // test set error
MeanTreeCollector treeError = new MeanTreeCollector(train, nbtrees); // mean tree error