Package cascading.pattern.model.generalregression

Examples of cascading.pattern.model.generalregression.RegressionTable.addParameter()


    RegressionTable regressionTable = new RegressionTable();

    regressionTable.addParameter( new Parameter( "intercept", 2.24166872421148d ) );

    regressionTable.addParameter( new Parameter( "p1", 0.53448203205212d, new CovariantPredictor( "sepal_width" ) ) );
    regressionTable.addParameter( new Parameter( "p2", 0.691035562908626d, new CovariantPredictor( "petal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p3", -0.21488157609202d, new CovariantPredictor( "petal_width" ) ) );

    regressionTable.addParameter( new Parameter( "p4", 0d, new FactorPredictor( "species", "setosa" ) ) );
    regressionTable.addParameter( new Parameter( "p5", -0.43150751368126d, new FactorPredictor( "species", "versicolor" ) ) );
View Full Code Here


    RegressionTable regressionTable = new RegressionTable();

    regressionTable.addParameter( new Parameter( "intercept", 2.24166872421148d ) );

    regressionTable.addParameter( new Parameter( "p1", 0.53448203205212d, new CovariantPredictor( "sepal_width" ) ) );
    regressionTable.addParameter( new Parameter( "p2", 0.691035562908626d, new CovariantPredictor( "petal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p3", -0.21488157609202d, new CovariantPredictor( "petal_width" ) ) );

    regressionTable.addParameter( new Parameter( "p4", 0d, new FactorPredictor( "species", "setosa" ) ) );
    regressionTable.addParameter( new Parameter( "p5", -0.43150751368126d, new FactorPredictor( "species", "versicolor" ) ) );
    regressionTable.addParameter( new Parameter( "p6", -0.61868924203063d, new FactorPredictor( "species", "virginica" ) ) );
View Full Code Here

    regressionTable.addParameter( new Parameter( "intercept", 2.24166872421148d ) );

    regressionTable.addParameter( new Parameter( "p1", 0.53448203205212d, new CovariantPredictor( "sepal_width" ) ) );
    regressionTable.addParameter( new Parameter( "p2", 0.691035562908626d, new CovariantPredictor( "petal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p3", -0.21488157609202d, new CovariantPredictor( "petal_width" ) ) );

    regressionTable.addParameter( new Parameter( "p4", 0d, new FactorPredictor( "species", "setosa" ) ) );
    regressionTable.addParameter( new Parameter( "p5", -0.43150751368126d, new FactorPredictor( "species", "versicolor" ) ) );
    regressionTable.addParameter( new Parameter( "p6", -0.61868924203063d, new FactorPredictor( "species", "virginica" ) ) );
View Full Code Here

    regressionTable.addParameter( new Parameter( "p1", 0.53448203205212d, new CovariantPredictor( "sepal_width" ) ) );
    regressionTable.addParameter( new Parameter( "p2", 0.691035562908626d, new CovariantPredictor( "petal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p3", -0.21488157609202d, new CovariantPredictor( "petal_width" ) ) );

    regressionTable.addParameter( new Parameter( "p4", 0d, new FactorPredictor( "species", "setosa" ) ) );
    regressionTable.addParameter( new Parameter( "p5", -0.43150751368126d, new FactorPredictor( "species", "versicolor" ) ) );
    regressionTable.addParameter( new Parameter( "p6", -0.61868924203063d, new FactorPredictor( "species", "virginica" ) ) );

    regressionSpec.addRegressionTable( regressionTable );
View Full Code Here

    regressionTable.addParameter( new Parameter( "p1", 0.53448203205212d, new CovariantPredictor( "sepal_width" ) ) );
    regressionTable.addParameter( new Parameter( "p2", 0.691035562908626d, new CovariantPredictor( "petal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p3", -0.21488157609202d, new CovariantPredictor( "petal_width" ) ) );

    regressionTable.addParameter( new Parameter( "p4", 0d, new FactorPredictor( "species", "setosa" ) ) );
    regressionTable.addParameter( new Parameter( "p5", -0.43150751368126d, new FactorPredictor( "species", "versicolor" ) ) );
    regressionTable.addParameter( new Parameter( "p6", -0.61868924203063d, new FactorPredictor( "species", "virginica" ) ) );

    regressionSpec.addRegressionTable( regressionTable );

    PredictionRegressionFunction regressionFunction = new PredictionRegressionFunction( regressionSpec );
View Full Code Here

    regressionTable.addParameter( new Parameter( "p2", 0.691035562908626d, new CovariantPredictor( "petal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p3", -0.21488157609202d, new CovariantPredictor( "petal_width" ) ) );

    regressionTable.addParameter( new Parameter( "p4", 0d, new FactorPredictor( "species", "setosa" ) ) );
    regressionTable.addParameter( new Parameter( "p5", -0.43150751368126d, new FactorPredictor( "species", "versicolor" ) ) );
    regressionTable.addParameter( new Parameter( "p6", -0.61868924203063d, new FactorPredictor( "species", "virginica" ) ) );

    regressionSpec.addRegressionTable( regressionTable );

    PredictionRegressionFunction regressionFunction = new PredictionRegressionFunction( regressionSpec );
View Full Code Here

    regressionSpec.setNormalization( new SoftMaxNormalization() );

    {
    RegressionTable regressionTable = new RegressionTable( "versicolor" );

    regressionTable.addParameter( new Parameter( "intercept", 86.7061379450354d ) );
    regressionTable.addParameter( new Parameter( "p0", -11.3336819785783d, new CovariantPredictor( "sepal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p1", -40.8601511206805d, new CovariantPredictor( "sepal_width" ) ) );
    regressionTable.addParameter( new Parameter( "p2", 38.439099544679d, new CovariantPredictor( "petal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p3", -12.2920287460217d, new CovariantPredictor( "petal_width" ) ) );
View Full Code Here

    {
    RegressionTable regressionTable = new RegressionTable( "versicolor" );

    regressionTable.addParameter( new Parameter( "intercept", 86.7061379450354d ) );
    regressionTable.addParameter( new Parameter( "p0", -11.3336819785783d, new CovariantPredictor( "sepal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p1", -40.8601511206805d, new CovariantPredictor( "sepal_width" ) ) );
    regressionTable.addParameter( new Parameter( "p2", 38.439099544679d, new CovariantPredictor( "petal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p3", -12.2920287460217d, new CovariantPredictor( "petal_width" ) ) );

    regressionSpec.addRegressionTable( regressionTable );
View Full Code Here

    {
    RegressionTable regressionTable = new RegressionTable( "versicolor" );

    regressionTable.addParameter( new Parameter( "intercept", 86.7061379450354d ) );
    regressionTable.addParameter( new Parameter( "p0", -11.3336819785783d, new CovariantPredictor( "sepal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p1", -40.8601511206805d, new CovariantPredictor( "sepal_width" ) ) );
    regressionTable.addParameter( new Parameter( "p2", 38.439099544679d, new CovariantPredictor( "petal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p3", -12.2920287460217d, new CovariantPredictor( "petal_width" ) ) );

    regressionSpec.addRegressionTable( regressionTable );
    }
View Full Code Here

    RegressionTable regressionTable = new RegressionTable( "versicolor" );

    regressionTable.addParameter( new Parameter( "intercept", 86.7061379450354d ) );
    regressionTable.addParameter( new Parameter( "p0", -11.3336819785783d, new CovariantPredictor( "sepal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p1", -40.8601511206805d, new CovariantPredictor( "sepal_width" ) ) );
    regressionTable.addParameter( new Parameter( "p2", 38.439099544679d, new CovariantPredictor( "petal_length" ) ) );
    regressionTable.addParameter( new Parameter( "p3", -12.2920287460217d, new CovariantPredictor( "petal_width" ) ) );

    regressionSpec.addRegressionTable( regressionTable );
    }
View Full Code Here

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.