Examples of buildClassifier()


Examples of weka.classifiers.Classifier.buildClassifier()

    currentClassifier.buildClassifier(train);
    evaluation.setPriors(train);
    evaluation.evaluateModel(currentClassifier, test);
  }
      } else {
  currentClassifier.buildClassifier(train);
  evaluation = new Evaluation(train);
  evaluation.evaluateModel(currentClassifier, test);
      }

      double error = evaluation.errorRate();
View Full Code Here

Examples of weka.classifiers.Classifier.buildClassifier()

  computeStats(data);//Compute training data stats for creating artificial examples
 
  //initialize new committee
  m_Committee = new Vector();
  Classifier newClassifier = m_Classifier;
  newClassifier.buildClassifier(divData);
  m_Committee.add(newClassifier);
  double eComm = computeError(divData);//compute ensemble error
  if(m_Debug) System.out.println("Initialize:\tClassifier "+i+" added to ensemble. Ensemble error = "+eComm);
 
  //repeat till desired committee size is reached OR the max number of iterations is exceeded
View Full Code Here

Examples of weka.classifiers.Classifier.buildClassifier()

    trainCopy = Filter.useFilter(trainCopy, delTransform);
    o_Evaluation = new Evaluation(trainCopy);
    String [] oneROpts = { "-B", ""+getMinimumBucketSize()};
    Classifier oneR = Classifier.forName("weka.classifiers.rules.OneR", oneROpts);
    if (m_evalUsingTrainingData) {
      oneR.buildClassifier(trainCopy);
      o_Evaluation.evaluateModel(oneR, trainCopy);
    } else {
      /*      o_Evaluation.crossValidateModel("weka.classifiers.rules.OneR",
              trainCopy, 10,
              null, new Random(m_randomSeed)); */
 
View Full Code Here

Examples of weka.classifiers.Classifier.buildClassifier()

    try {
      current = Classifier.makeCopy(template);
    } catch (Exception ex) {
      m_Log.logMessage("Problem copying classifier: " + ex.getMessage());
    }
    current.buildClassifier(train);
    Instances test = inst.testCV(numFolds, fold);
    m_Log.statusMessage("Evaluating model for fold "
            + (fold + 1) + "...");
    for (int jj=0;jj<test.numInstances();jj++) {
      processClassifierPrediction(test.instance(jj), current,
View Full Code Here

Examples of weka.classifiers.Classifier.buildClassifier()

        try {
    current = Classifier.makeCopy(template);
        } catch (Exception ex) {
    m_Log.logMessage("Problem copying classifier: " + ex.getMessage());
        }
        current.buildClassifier(train);
        eval = new Evaluation(train, costMatrix);
        m_Log.statusMessage("Evaluating on test split...");
      
        if (outputPredictionsText) {
    printPredictionsHeader(outBuff, inst, "test split");
View Full Code Here

Examples of weka.classifiers.Classifier.buildClassifier()

    trainCopy = Filter.useFilter(trainCopy, delTransform);
    o_Evaluation = new Evaluation(trainCopy);
    String [] oneROpts = { "-B", ""+getMinimumBucketSize()};
    Classifier oneR = AbstractClassifier.forName("weka.classifiers.rules.OneR", oneROpts);
    if (m_evalUsingTrainingData) {
      oneR.buildClassifier(trainCopy);
      o_Evaluation.evaluateModel(oneR, trainCopy);
    } else {
      /*      o_Evaluation.crossValidateModel("weka.classifiers.rules.OneR",
              trainCopy, 10,
              null, new Random(m_randomSeed)); */
 
View Full Code Here

Examples of weka.classifiers.Classifier.buildClassifier()

          // We want to randomize the data the same way for every
          // learning scheme.
    train = newData.trainCV(m_NumXValFolds, j, new Random (1));
    test = newData.testCV(m_NumXValFolds, j);
    currentClassifier.buildClassifier(train);
    evaluation.setPriors(train);
    evaluation.evaluateModel(currentClassifier, test);
  }
      } else {
  currentClassifier.buildClassifier(train);
View Full Code Here

Examples of weka.classifiers.bayes.BayesNet.buildClassifier()

        String[] str = cls.getOptions();
     //   str[2] = "weka.classifiers.bayes.net.search.local.TAN";
     //   str[4] = "";
      //  str[5] = "";
        cls.setOptions(str);
      cls.buildClassifier(data);
    } catch (Exception e) {
      e.printStackTrace();
    }
   
    return cls;
View Full Code Here

Examples of weka.classifiers.bayes.BayesNet.buildClassifier()

        BayesNet EmptyNet = new BayesNet();
        K2 oSearchAlgorithm = new K2();
        oSearchAlgorithm.setInitAsNaiveBayes(false);
        oSearchAlgorithm.setMaxNrOfParents(0);
        EmptyNet.setSearchAlgorithm(oSearchAlgorithm);
        EmptyNet.buildClassifier(instances);

        BayesNet NBNet = new BayesNet();
        oSearchAlgorithm.setInitAsNaiveBayes(true);
        oSearchAlgorithm.setMaxNrOfParents(1);
        NBNet.setSearchAlgorithm(oSearchAlgorithm);
View Full Code Here

Examples of weka.classifiers.bayes.BayesNet.buildClassifier()

        BayesNet NBNet = new BayesNet();
        oSearchAlgorithm.setInitAsNaiveBayes(true);
        oSearchAlgorithm.setMaxNrOfParents(1);
        NBNet.setSearchAlgorithm(oSearchAlgorithm);
        NBNet.buildClassifier(instances);

        // estimate CPTs
        for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) {
            if (iAttribute != instances.classIndex()) {
                  double w1 = 0.0, w2 = 0.0;
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.