Examples of averageTokenAccuracy()


Examples of cc.mallet.fst.CRF.averageTokenAccuracy()

    crf.addFullyConnectedStatesForLabels();
    crf.setWeightsDimensionAsIn(lists[0], false);
    CRFTrainerByStochasticGradient crft = new CRFTrainerByStochasticGradient(
        crf, 0.0001);
    System.out.println("Training Accuracy before training = "
        + crf.averageTokenAccuracy(lists[0]));
    System.out.println("Testing  Accuracy before training = "
        + crf.averageTokenAccuracy(lists[1]));
    System.out.println("Training...");
    // either fixed learning rate or selected on a sample
    crft.setLearningRateByLikelihood(lists[0]);
View Full Code Here

Examples of cc.mallet.fst.CRF.averageTokenAccuracy()

    CRFTrainerByStochasticGradient crft = new CRFTrainerByStochasticGradient(
        crf, 0.0001);
    System.out.println("Training Accuracy before training = "
        + crf.averageTokenAccuracy(lists[0]));
    System.out.println("Testing  Accuracy before training = "
        + crf.averageTokenAccuracy(lists[1]));
    System.out.println("Training...");
    // either fixed learning rate or selected on a sample
    crft.setLearningRateByLikelihood(lists[0]);
    // crft.setLearningRate(0.01);
    crft.train(lists[0], 100);
View Full Code Here

Examples of cc.mallet.fst.CRF.averageTokenAccuracy()

    crft.setLearningRateByLikelihood(lists[0]);
    // crft.setLearningRate(0.01);
    crft.train(lists[0], 100);
    crf.print();
    System.out.println("Training Accuracy after training = "
        + crf.averageTokenAccuracy(lists[0]));
    System.out.println("Testing  Accuracy after training = "
        + crf.averageTokenAccuracy(lists[1]));
  }

  public void testSumLatticeImplementations() {
View Full Code Here

Examples of cc.mallet.fst.CRF.averageTokenAccuracy()

    crft.train(lists[0], 100);
    crf.print();
    System.out.println("Training Accuracy after training = "
        + crf.averageTokenAccuracy(lists[0]));
    System.out.println("Testing  Accuracy after training = "
        + crf.averageTokenAccuracy(lists[1]));
  }

  public void testSumLatticeImplementations() {
    Pipe p = makeSpacePredictionPipe();
    Pipe p2 = new TestCRF2String();
View Full Code Here

Examples of cc.mallet.fst.CRF.averageTokenAccuracy()

    crf.addFullyConnectedStatesForLabels();
    crf.setWeightsDimensionAsIn(lists[0], false);
    CRFTrainerByStochasticGradient crft = new CRFTrainerByStochasticGradient(
        crf, 0.0001);
    System.out.println("Training Accuracy before training = "
        + crf.averageTokenAccuracy(lists[0]));
    System.out.println("Testing  Accuracy before training = "
        + crf.averageTokenAccuracy(lists[1]));
    System.out.println("Training...");
    // either fixed learning rate or selected on a sample
    crft.setLearningRateByLikelihood(lists[0]);
View Full Code Here

Examples of cc.mallet.fst.CRF.averageTokenAccuracy()

    CRFTrainerByStochasticGradient crft = new CRFTrainerByStochasticGradient(
        crf, 0.0001);
    System.out.println("Training Accuracy before training = "
        + crf.averageTokenAccuracy(lists[0]));
    System.out.println("Testing  Accuracy before training = "
        + crf.averageTokenAccuracy(lists[1]));
    System.out.println("Training...");
    // either fixed learning rate or selected on a sample
    crft.setLearningRateByLikelihood(lists[0]);
    // crft.setLearningRate(0.01);
    crft.train(lists[0], 100);
View Full Code Here

Examples of cc.mallet.fst.CRF.averageTokenAccuracy()

    crft.setLearningRateByLikelihood(lists[0]);
    // crft.setLearningRate(0.01);
    crft.train(lists[0], 100);
    crf.print();
    System.out.println("Training Accuracy after training = "
        + crf.averageTokenAccuracy(lists[0]));
    System.out.println("Testing  Accuracy after training = "
        + crf.averageTokenAccuracy(lists[1]));

    // now check the speeds of SumLatticeDefault vs SumLatticeScaling
    long totalTimeDefault = 0, totalTimeScaling = 0;
View Full Code Here

Examples of cc.mallet.fst.CRF.averageTokenAccuracy()

    crft.train(lists[0], 100);
    crf.print();
    System.out.println("Training Accuracy after training = "
        + crf.averageTokenAccuracy(lists[0]));
    System.out.println("Testing  Accuracy after training = "
        + crf.averageTokenAccuracy(lists[1]));

    // now check the speeds of SumLatticeDefault vs SumLatticeScaling
    long totalTimeDefault = 0, totalTimeScaling = 0;
    for (int iter = 0; iter < 10000; iter++) {
      for (int ii = 0; ii < lists[1].size(); ii++) {
View Full Code Here

Examples of cc.mallet.fst.MEMM.averageTokenAccuracy()

    MEMMTrainer memmt = new MEMMTrainer (memm);
    if (testValueAndGradient) {
      Optimizable.ByGradientValue minable = memmt.getOptimizableMEMM(lists[0]);
      TestOptimizable.testValueAndGradient(minable);
    } else {
      System.out.println("Training Accuracy before training = " + memm.averageTokenAccuracy(lists[0]));
      System.out.println("Testing  Accuracy before training = " + memm.averageTokenAccuracy(lists[1]));
      System.out.println("Training...");
      memmt.train(lists[0], 1);
      System.out.println("Training Accuracy after training = " + memm.averageTokenAccuracy(lists[0]));
      System.out.println("Testing  Accuracy after training = " + memm.averageTokenAccuracy(lists[1]));
View Full Code Here

Examples of cc.mallet.fst.MEMM.averageTokenAccuracy()

    if (testValueAndGradient) {
      Optimizable.ByGradientValue minable = memmt.getOptimizableMEMM(lists[0]);
      TestOptimizable.testValueAndGradient(minable);
    } else {
      System.out.println("Training Accuracy before training = " + memm.averageTokenAccuracy(lists[0]));
      System.out.println("Testing  Accuracy before training = " + memm.averageTokenAccuracy(lists[1]));
      System.out.println("Training...");
      memmt.train(lists[0], 1);
      System.out.println("Training Accuracy after training = " + memm.averageTokenAccuracy(lists[0]));
      System.out.println("Testing  Accuracy after training = " + memm.averageTokenAccuracy(lists[1]));
      System.out.println("Training results:");
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.