Examples of areaUnderROC()


Examples of weka.classifiers.Evaluation.areaUnderROC()

    result[current++] = new Double(eval.falseNegativeRate(m_IRclass));
    result[current++] = new Double(eval.numFalseNegatives(m_IRclass));
    result[current++] = new Double(eval.precision(m_IRclass));
    result[current++] = new Double(eval.recall(m_IRclass));
    result[current++] = new Double(eval.fMeasure(m_IRclass));
    result[current++] = new Double(eval.areaUnderROC(m_IRclass));
   
    // Weighted IR stats
    result[current++] = new Double(eval.weightedTruePositiveRate());
    result[current++] = new Double(eval.weightedFalsePositiveRate());
    result[current++] = new Double(eval.weightedTrueNegativeRate());
View Full Code Here

Examples of weka.classifiers.Evaluation.areaUnderROC()

          long elapsedTime = System.currentTimeMillis() - millis;

          double aucSum = 0.0;
          double sumClassProps = 0;
          for (int c = 0; c < data.numClasses(); c++) {
            if (Double.isNaN(eval.areaUnderROC(c)))
              continue;
            aucSum += eval.areaUnderROC(c) * classProps[c];
            // this should sum to 1.0 in the end, as all the classes with AUC==NaN should have weight 0
            sumClassProps += classProps[c];
          }
View Full Code Here

Examples of weka.classifiers.Evaluation.areaUnderROC()

          double aucSum = 0.0;
          double sumClassProps = 0;
          for (int c = 0; c < data.numClasses(); c++) {
            if (Double.isNaN(eval.areaUnderROC(c)))
              continue;
            aucSum += eval.areaUnderROC(c) * classProps[c];
            // this should sum to 1.0 in the end, as all the classes with AUC==NaN should have weight 0
            sumClassProps += classProps[c];
          }


View Full Code Here

Examples of weka.classifiers.Evaluation.areaUnderROC()

    result[current++] = new Double(eval.falseNegativeRate(m_IRclass));
    result[current++] = new Double(eval.numFalseNegatives(m_IRclass));
    result[current++] = new Double(eval.precision(m_IRclass));
    result[current++] = new Double(eval.recall(m_IRclass));
    result[current++] = new Double(eval.fMeasure(m_IRclass));
    result[current++] = new Double(eval.areaUnderROC(m_IRclass));
   
    // Weighted IR stats
    result[current++] = new Double(eval.weightedTruePositiveRate());
    result[current++] = new Double(eval.weightedFalsePositiveRate());
    result[current++] = new Double(eval.weightedTrueNegativeRate());
View Full Code Here

Examples of weka.classifiers.Evaluation.areaUnderROC()

    // it's
    // not clear which class we should use in that case... so
    // instead
    // we only print these metrics for binary classification
    // problems.
    output += "\tROC:" + evalModel.areaUnderROC(1);
    output += "\tPREC:" + evalModel.precision(1);
    output += "\tFSCR:" + evalModel.fMeasure(1);
  }
  System.out.println(output);
      }
View Full Code Here

Examples of weka.classifiers.Evaluation.areaUnderROC()

    result[current++] = new Double(eval.falseNegativeRate(m_IRclass));
    result[current++] = new Double(eval.numFalseNegatives(m_IRclass));
    result[current++] = new Double(eval.precision(m_IRclass));
    result[current++] = new Double(eval.recall(m_IRclass));
    result[current++] = new Double(eval.fMeasure(m_IRclass));
    result[current++] = new Double(eval.areaUnderROC(m_IRclass));
   
    // Timing stats
    result[current++] = new Double(trainTimeElapsed / 1000.0);
    result[current++] = new Double(testTimeElapsed / 1000.0);
    if(canMeasureCPUTime) {
View Full Code Here

Examples of weka.classifiers.Evaluation.areaUnderROC()

    result[current++] = new Double(eval.falseNegativeRate(m_IRclass));
    result[current++] = new Double(eval.numFalseNegatives(m_IRclass));
    result[current++] = new Double(eval.precision(m_IRclass));
    result[current++] = new Double(eval.recall(m_IRclass));
    result[current++] = new Double(eval.fMeasure(m_IRclass));
    result[current++] = new Double(eval.areaUnderROC(m_IRclass));
   
    // Weighted IR stats
    result[current++] = new Double(eval.weightedTruePositiveRate());
    result[current++] = new Double(eval.weightedFalsePositiveRate());
    result[current++] = new Double(eval.weightedTrueNegativeRate());
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.