Package weka.filters.unsupervised.attribute

Examples of weka.filters.unsupervised.attribute.Reorder


   * it moves it to the end of the attributes
   *
   * @param columnIndex    the index of the column
   */
  public void attributeAsClassAt(int columnIndex) {
    Reorder     reorder;
    String      order;
    int         i;
   
    if ( (columnIndex > 0) && (columnIndex < getColumnCount()) ) {
      addUndoPoint();
     
      try {
        // build order string (1-based!)
        order = "";
        for (i = 1; i < m_Data.numAttributes() + 1; i++) {
          // skip new class
          if (i == columnIndex)
            continue;
         
          if (!order.equals(""))
            order += ",";
          order += Integer.toString(i);
        }
        if (!order.equals(""))
          order += ",";
        order += Integer.toString(columnIndex);
       
        // process data
        reorder = new Reorder();
        reorder.setAttributeIndices(order);
        reorder.setInputFormat(m_Data);
        m_Data = Filter.useFilter(m_Data, reorder);
       
        // set class index
        m_Data.setClassIndex(m_Data.numAttributes() - 1);
      }
View Full Code Here


      if (nNode >= getNrOfNodes()) {
        throw new Exception("Cannot find node named [[[" + sName + "]]] in the data");
      }
      order[iNode] = nNode;
    }
    Reorder reorderFilter = new Reorder();
    reorderFilter.setAttributeIndicesArray(order);
    reorderFilter.setInputFormat(instances);
    instances = Filter.useFilter(instances, reorderFilter);
    // filter using discretization/missing values filter
    Instances newInstances = new Instances(m_Instances, 0);
    if (m_DiscretizeFilter == null && m_MissingValuesFilter == null) {
      newInstances = normalizeDataSet(instances);
View Full Code Here

      if (nNode >= getNrOfNodes()) {
        throw new Exception("Cannot find node named [[[" + sName + "]]] in the data");
      }
      order[iNode] = nNode;
    }
    Reorder reorderFilter = new Reorder();
    reorderFilter.setAttributeIndicesArray(order);
    reorderFilter.setInputFormat(instances);
    instances = Filter.useFilter(instances, reorderFilter);
    // filter using discretization/missing values filter
    Instances newInstances = new Instances(m_Instances, 0);
    if (m_DiscretizeFilter == null && m_MissingValuesFilter == null) {
      newInstances = normalizeDataSet(instances);
View Full Code Here

   * it moves it to the end of the attributes
   *
   * @param columnIndex    the index of the column
   */
  public void attributeAsClassAt(int columnIndex) {
    Reorder     reorder;
    String      order;
    int         i;

    if ( (columnIndex > 0) && (columnIndex < getColumnCount()) ) {
      addUndoPoint();

      try {
        // build order string (1-based!)
        order = "";
        for (i = 1; i < m_Data.numAttributes() + 1; i++) {
          // skip new class
          if (i == columnIndex)
            continue;

          if (!order.equals(""))
            order += ",";
          order += Integer.toString(i);
        }
        if (!order.equals(""))
          order += ",";
        order += Integer.toString(columnIndex);

        // process data
        reorder = new Reorder();
        reorder.setAttributeIndices(order);
        reorder.setInputFormat(m_Data);
        m_Data = Filter.useFilter(m_Data, reorder);

        // set class index
        m_Data.setClassIndex(m_Data.numAttributes() - 1);
      }
View Full Code Here

   * it moves it to the end of the attributes
   *
   * @param columnIndex    the index of the column
   */
  public void attributeAsClassAt(int columnIndex) {
    Reorder     reorder;
    String      order;
    int         i;
   
    if ( (columnIndex > 0) && (columnIndex < getColumnCount()) ) {
      addUndoPoint();
     
      try {
        // build order string (1-based!)
        order = "";
        for (i = 1; i < m_Data.numAttributes() + 1; i++) {
          // skip new class
          if (i == columnIndex)
            continue;
         
          if (!order.equals(""))
            order += ",";
          order += Integer.toString(i);
        }
        if (!order.equals(""))
          order += ",";
        order += Integer.toString(columnIndex);
       
        // process data
        reorder = new Reorder();
        reorder.setAttributeIndices(order);
        reorder.setInputFormat(m_Data);
        m_Data = Filter.useFilter(m_Data, reorder);
       
        // set class index
        m_Data.setClassIndex(m_Data.numAttributes() - 1);
      }
View Full Code Here

      if (nNode >= getNrOfNodes()) {
        throw new Exception("Cannot find node named [[[" + sName + "]]] in the data");
      }
      order[iNode] = nNode;
    }
    Reorder reorderFilter = new Reorder();
    reorderFilter.setAttributeIndicesArray(order);
    reorderFilter.setInputFormat(instances);
    instances = Filter.useFilter(instances, reorderFilter);
    // filter using discretization/missing values filter
    Instances newInstances = new Instances(m_Instances, 0);
    if (m_DiscretizeFilter == null && m_MissingValuesFilter == null) {
      newInstances = normalizeDataSet(instances);
View Full Code Here

   * it moves it to the end of the attributes
   *
   * @param columnIndex    the index of the column
   */
  public void attributeAsClassAt(int columnIndex) {
    Reorder     reorder;
    String      order;
    int         i;
   
    if ( (columnIndex > 0) && (columnIndex < getColumnCount()) ) {
      addUndoPoint();
     
      try {
        // build order string (1-based!)
        order = "";
        for (i = 1; i < m_Data.numAttributes() + 1; i++) {
          // skip new class
          if (i == columnIndex)
            continue;
         
          if (!order.equals(""))
            order += ",";
          order += Integer.toString(i);
        }
        if (!order.equals(""))
          order += ",";
        order += Integer.toString(columnIndex);
       
        // process data
        reorder = new Reorder();
        reorder.setAttributeIndices(order);
        reorder.setInputFormat(m_Data);
        m_Data = Filter.useFilter(m_Data, reorder);
       
        // set class index
        m_Data.setClassIndex(m_Data.numAttributes() - 1);
      }
View Full Code Here

      if (nNode >= getNrOfNodes()) {
        throw new Exception("Cannot find node named [[[" + sName + "]]] in the data");
      }
      order[iNode] = nNode;
    }
    Reorder reorderFilter = new Reorder();
    reorderFilter.setAttributeIndicesArray(order);
    reorderFilter.setInputFormat(instances);
    instances = Filter.useFilter(instances, reorderFilter);
    // filter using discretization/missing values filter
    Instances newInstances = new Instances(m_Instances, 0);
    if (m_DiscretizeFilter == null && m_MissingValuesFilter == null) {
      newInstances = normalizeDataSet(instances);
View Full Code Here

    toUse.setSuppressMappingReport(true);
    return toUse;
  }
 
  protected Instances reorderAtts(Instances data) throws Exception {
    Reorder r = new Reorder();
    String range = "last";
    for (int i = data.numAttributes() - 1; i > 0; i--) {
      range += "," + i;
    }
    r.setAttributeIndices(range);
    r.setInputFormat(data);
    data = Filter.useFilter(data, r);
   
    return data;
  }
View Full Code Here

                            int[] shuff_withClass = new int[filt_learn.numAttributes()];
                            for (int jj = 0; jj < filt_learn.numAttributes()-1; jj++) {shuff_noClass[jj]=String.valueOf(jj);}
                            Collections.shuffle(Arrays.asList(shuff_noClass), new Random(42));
                            for (int kk = 0; kk < filt_learn.numAttributes()-1; kk++) {shuff_withClass[kk]=Integer.valueOf(shuff_noClass[kk]);}
                            shuff_withClass[filt_learn.numAttributes()-1] = filt_learn.numAttributes()-1;
                            Reorder reo = new Reorder();
                            reo.setAttributeIndicesArray(shuff_withClass);
                            Instances shuffled_learn = new Instances(filt_learn);
                            reo.setInputFormat(shuffled_learn);
                            shuffled_learn = Filter.useFilter(shuffled_learn, reo);
                            Instances shuffled_hold = new Instances(filt_hold);
                            reo.setInputFormat(shuffled_hold);
                            shuffled_hold = Filter.useFilter(shuffled_hold, reo);

                            ///////////Randomizes the order of the instances (Doesn't matter here, because we're using the whole set!)

                            Instances randData = new Instances(shuffled_learn);
                            cpyCls[0].buildClassifier(randData);
                           


                            ///// Figure out who stays and who goes ////////////
                          
                            WinningShuffle_Learn = shuffled_learn;
                            WinningShuffle_Hold = shuffled_hold;
                          
                        }

                        for (int PII_iter_count = 0; PII_iter_count < numIters; PII_iter_count++){




                            //Randomize the ORDER of the ATTRIBUTES (not the instances, because that would be stupid//
                            String[] shuff_noClass = new String[filt_learn.numAttributes()-1];
                            int[] shuff_withClass = new int[filt_learn.numAttributes()];
                            for (int jj = 0; jj < filt_learn.numAttributes()-1; jj++) {shuff_noClass[jj]=String.valueOf(jj);}
                            if (PII_iter_count!=0){Collections.shuffle(Arrays.asList(shuff_noClass), new Random(PII_iter_count+1));}
                            for (int kk = 0; kk < filt_learn.numAttributes()-1; kk++) {shuff_withClass[kk]=Integer.valueOf(shuff_noClass[kk]);}
                            shuff_withClass[filt_learn.numAttributes()-1] = filt_learn.numAttributes()-1;
                            Reorder reo = new Reorder();
                            reo.setAttributeIndicesArray(shuff_withClass);
                            Instances shuffled_learn = new Instances(filt_learn);
                            reo.setInputFormat(shuffled_learn);
                            shuffled_learn = Filter.useFilter(shuffled_learn, reo);
                            Instances shuffled_hold = new Instances(filt_hold);
                            reo.setInputFormat(shuffled_hold);
                            shuffled_hold = Filter.useFilter(shuffled_hold, reo);

                            ///////////Randomizes the order of the instances (Doesn't matter here, because we're using the whole set!)

                            Instances randData = new Instances(shuffled_learn);
View Full Code Here

TOP

Related Classes of weka.filters.unsupervised.attribute.Reorder

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.