Package weka.core.converters.ConverterUtils

Examples of weka.core.converters.ConverterUtils.DataSource


  public void run() {
    // Copy the current state of things
    m_Log.statusMessage("Setting up...");
    CostMatrix costMatrix = null;
    Instances inst = new Instances(m_Instances);
    DataSource source = null;
          Instances userTestStructure = null;
    // additional vis info (either shape type or point size)
    FastVector plotShape = new FastVector();
    FastVector plotSize = new FastVector();
    Instances predInstances = null;
  
    // for timing
    long trainTimeStart = 0, trainTimeElapsed = 0;

          try {
            if (m_TestLoader != null && m_TestLoader.getStructure() != null) {
              m_TestLoader.reset();
              source = new DataSource(m_TestLoader);
              userTestStructure = source.getStructure();
            }
          } catch (Exception ex) {
            ex.printStackTrace();
          }
    if (m_EvalWRTCostsBut.isSelected()) {
      costMatrix = new CostMatrix((CostMatrix) m_CostMatrixEditor
          .getValue());
    }
    boolean outputModel = m_OutputModelBut.isSelected();
    boolean outputConfusion = m_OutputConfusionBut.isSelected();
    boolean outputPerClass = m_OutputPerClassBut.isSelected();
    boolean outputSummary = true;
          boolean outputEntropy = m_OutputEntropyBut.isSelected();
    boolean saveVis = m_StorePredictionsBut.isSelected();
    boolean outputPredictionsText = m_OutputPredictionsTextBut.isSelected();
    if (m_OutputAdditionalAttributesText.getText().equals("")) {
      m_OutputAdditionalAttributesRange = null;
    }
    else {
      m_OutputAdditionalAttributesRange = new Range(m_OutputAdditionalAttributesText.getText());
      m_OutputAdditionalAttributesRange.setUpper(inst.numAttributes() - 1);
    }

    String grph = null;

    int testMode = 0;
    int numFolds = 10;
          double percent = 66;
    int classIndex = m_ClassCombo.getSelectedIndex();
    Classifier classifier = (Classifier) m_ClassifierEditor.getValue();
    Classifier template = null;
    try {
      template = Classifier.makeCopy(classifier);
    } catch (Exception ex) {
      m_Log.logMessage("Problem copying classifier: " + ex.getMessage());
    }
    Classifier fullClassifier = null;
    StringBuffer outBuff = new StringBuffer();
    String name = (new SimpleDateFormat("HH:mm:ss - "))
    .format(new Date());
    String cname = classifier.getClass().getName();
    if (cname.startsWith("weka.classifiers.")) {
      name += cname.substring("weka.classifiers.".length());
    } else {
      name += cname;
    }
          String cmd = m_ClassifierEditor.getValue().getClass().getName();
          if (m_ClassifierEditor.getValue() instanceof OptionHandler)
            cmd += " " + Utils.joinOptions(((OptionHandler) m_ClassifierEditor.getValue()).getOptions());
    Evaluation eval = null;
    try {
      if (m_CVBut.isSelected()) {
        testMode = 1;
        numFolds = Integer.parseInt(m_CVText.getText());
        if (numFolds <= 1) {
    throw new Exception("Number of folds must be greater than 1");
        }
      } else if (m_PercentBut.isSelected()) {
        testMode = 2;
        percent = Double.parseDouble(m_PercentText.getText());
        if ((percent <= 0) || (percent >= 100)) {
    throw new Exception("Percentage must be between 0 and 100");
        }
      } else if (m_TrainBut.isSelected()) {
        testMode = 3;
      } else if (m_TestSplitBut.isSelected()) {
        testMode = 4;
        // Check the test instance compatibility
        if (source == null) {
    throw new Exception("No user test set has been specified");
        }
        if (!inst.equalHeaders(userTestStructure)) {
    throw new Exception("Train and test set are not compatible");
        }
              userTestStructure.setClassIndex(classIndex);
      } else {
        throw new Exception("Unknown test mode");
      }
      inst.setClassIndex(classIndex);

      // set up the structure of the plottable instances for
      // visualization
            if (saveVis) {
              predInstances = setUpVisualizableInstances(inst);
              predInstances.setClassIndex(inst.classIndex()+1);
            }

      // Output some header information
      m_Log.logMessage("Started " + cname);
      m_Log.logMessage("Command: " + cmd);
      if (m_Log instanceof TaskLogger) {
        ((TaskLogger)m_Log).taskStarted();
      }
      outBuff.append("=== Run information ===\n\n");
      outBuff.append("Scheme:       " + cname);
      if (classifier instanceof OptionHandler) {
        String [] o = ((OptionHandler) classifier).getOptions();
        outBuff.append(" " + Utils.joinOptions(o));
      }
      outBuff.append("\n");
      outBuff.append("Relation:     " + inst.relationName() + '\n');
      outBuff.append("Instances:    " + inst.numInstances() + '\n');
      outBuff.append("Attributes:   " + inst.numAttributes() + '\n');
      if (inst.numAttributes() < 100) {
        for (int i = 0; i < inst.numAttributes(); i++) {
    outBuff.append("              " + inst.attribute(i).name()
             + '\n');
        }
      } else {
        outBuff.append("              [list of attributes omitted]\n");
      }

      outBuff.append("Test mode:    ");
      switch (testMode) {
        case 3: // Test on training
    outBuff.append("evaluate on training data\n");
    break;
        case 1: // CV mode
    outBuff.append("" + numFolds + "-fold cross-validation\n");
    break;
        case 2: // Percent split
    outBuff.append("split " + percent
        + "% train, remainder test\n");
    break;
        case 4: // Test on user split
    if (source.isIncremental())
      outBuff.append("user supplied test set: "
          + " size unknown (reading incrementally)\n");
    else
      outBuff.append("user supplied test set: "
          + source.getDataSet().numInstances() + " instances\n");
    break;
      }
            if (costMatrix != null) {
               outBuff.append("Evaluation cost matrix:\n")
               .append(costMatrix.toString()).append("\n");
            }
      outBuff.append("\n");
      m_History.addResult(name, outBuff);
      m_History.setSingle(name);
     
      // Build the model and output it.
      if (outputModel || (testMode == 3) || (testMode == 4)) {
        m_Log.statusMessage("Building model on training data...");

        trainTimeStart = System.currentTimeMillis();
        classifier.buildClassifier(inst);
        trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
      }

      if (outputModel) {
        outBuff.append("=== Classifier model (full training set) ===\n\n");
        outBuff.append(classifier.toString() + "\n");
        outBuff.append("\nTime taken to build model: " +
           Utils.doubleToString(trainTimeElapsed / 1000.0,2)
           + " seconds\n\n");
        m_History.updateResult(name);
        if (classifier instanceof Drawable) {
    grph = null;
    try {
      grph = ((Drawable)classifier).graph();
    } catch (Exception ex) {
    }
        }
        // copy full model for output
        SerializedObject so = new SerializedObject(classifier);
        fullClassifier = (Classifier) so.getObject();
      }
     
      switch (testMode) {
        case 3: // Test on training
        m_Log.statusMessage("Evaluating on training data...");
        eval = new Evaluation(inst, costMatrix);
       
        if (outputPredictionsText) {
    printPredictionsHeader(outBuff, inst, "training set");
        }

        for (int jj=0;jj<inst.numInstances();jj++) {
    processClassifierPrediction(inst.instance(jj), classifier,
              eval, predInstances, plotShape,
              plotSize);
   
    if (outputPredictionsText) {
      outBuff.append(predictionText(classifier, inst.instance(jj), jj+1));
    }
    if ((jj % 100) == 0) {
      m_Log.statusMessage("Evaluating on training data. Processed "
              +jj+" instances...");
    }
        }
        if (outputPredictionsText) {
    outBuff.append("\n");
        }
        outBuff.append("=== Evaluation on training set ===\n");
        break;

        case 1: // CV mode
        m_Log.statusMessage("Randomizing instances...");
        int rnd = 1;
        try {
    rnd = Integer.parseInt(m_RandomSeedText.getText().trim());
    // System.err.println("Using random seed "+rnd);
        } catch (Exception ex) {
    m_Log.logMessage("Trouble parsing random seed value");
    rnd = 1;
        }
        Random random = new Random(rnd);
        inst.randomize(random);
        if (inst.attribute(classIndex).isNominal()) {
    m_Log.statusMessage("Stratifying instances...");
    inst.stratify(numFolds);
        }
        eval = new Evaluation(inst, costMatrix);
     
        if (outputPredictionsText) {
    printPredictionsHeader(outBuff, inst, "test data");
        }

        // Make some splits and do a CV
        for (int fold = 0; fold < numFolds; fold++) {
    m_Log.statusMessage("Creating splits for fold "
            + (fold + 1) + "...");
    Instances train = inst.trainCV(numFolds, fold, random);
    eval.setPriors(train);
    m_Log.statusMessage("Building model for fold "
            + (fold + 1) + "...");
    Classifier current = null;
    try {
      current = Classifier.makeCopy(template);
    } catch (Exception ex) {
      m_Log.logMessage("Problem copying classifier: " + ex.getMessage());
    }
    current.buildClassifier(train);
    Instances test = inst.testCV(numFolds, fold);
    m_Log.statusMessage("Evaluating model for fold "
            + (fold + 1) + "...");
    for (int jj=0;jj<test.numInstances();jj++) {
      processClassifierPrediction(test.instance(jj), current,
                eval, predInstances, plotShape,
                plotSize);
      if (outputPredictionsText) {
        outBuff.append(predictionText(current, test.instance(jj), jj+1));
      }
    }
        }
        if (outputPredictionsText) {
    outBuff.append("\n");
        }
        if (inst.attribute(classIndex).isNominal()) {
    outBuff.append("=== Stratified cross-validation ===\n");
        } else {
    outBuff.append("=== Cross-validation ===\n");
        }
        break;
   
        case 2: // Percent split
        if (!m_PreserveOrderBut.isSelected()) {
    m_Log.statusMessage("Randomizing instances...");
    try {
      rnd = Integer.parseInt(m_RandomSeedText.getText().trim());
    } catch (Exception ex) {
      m_Log.logMessage("Trouble parsing random seed value");
      rnd = 1;
    }
    inst.randomize(new Random(rnd));
        }
        int trainSize = (int) Math.round(inst.numInstances() * percent / 100);
        int testSize = inst.numInstances() - trainSize;
        Instances train = new Instances(inst, 0, trainSize);
        Instances test = new Instances(inst, trainSize, testSize);
        m_Log.statusMessage("Building model on training split ("+trainSize+" instances)...");
        Classifier current = null;
        try {
    current = Classifier.makeCopy(template);
        } catch (Exception ex) {
    m_Log.logMessage("Problem copying classifier: " + ex.getMessage());
        }
        current.buildClassifier(train);
        eval = new Evaluation(train, costMatrix);
        m_Log.statusMessage("Evaluating on test split...");
      
        if (outputPredictionsText) {
    printPredictionsHeader(outBuff, inst, "test split");
        }
    
        for (int jj=0;jj<test.numInstances();jj++) {
    processClassifierPrediction(test.instance(jj), current,
              eval, predInstances, plotShape,
              plotSize);
    if (outputPredictionsText) {
        outBuff.append(predictionText(current, test.instance(jj), jj+1));
    }
    if ((jj % 100) == 0) {
      m_Log.statusMessage("Evaluating on test split. Processed "
              +jj+" instances...");
    }
        }
        if (outputPredictionsText) {
    outBuff.append("\n");
        }
        outBuff.append("=== Evaluation on test split ===\n");
        break;
   
        case 4: // Test on user split
        m_Log.statusMessage("Evaluating on test data...");
        eval = new Evaluation(inst, costMatrix);
       
        if (outputPredictionsText) {
    printPredictionsHeader(outBuff, inst, "test set");
        }

        Instance instance;
        int jj = 0;
        while (source.hasMoreElements(userTestStructure)) {
    instance = source.nextElement(userTestStructure);
    processClassifierPrediction(instance, classifier,
        eval, predInstances, plotShape,
        plotSize);
    if (outputPredictionsText) {
      outBuff.append(predictionText(classifier, instance, jj+1));
View Full Code Here


          public void run() {
            // Copy the current state of things
            m_Log.statusMessage("Setting up...");

            StringBuffer outBuff = m_History.getNamedBuffer(name);
            DataSource source = null;
            Instances userTestStructure = null;
            // additional vis info (either shape type or point size)
            FastVector plotShape = new FastVector();
            FastVector plotSize = new FastVector();
            Instances predInstances = null;

            CostMatrix costMatrix = null;
            if (m_EvalWRTCostsBut.isSelected()) {
              costMatrix = new CostMatrix((CostMatrix) m_CostMatrixEditor
                                          .getValue());
            }   
            boolean outputConfusion = m_OutputConfusionBut.isSelected();
            boolean outputPerClass = m_OutputPerClassBut.isSelected();
            boolean outputSummary = true;
            boolean outputEntropy = m_OutputEntropyBut.isSelected();
            boolean saveVis = m_StorePredictionsBut.isSelected();
            boolean outputPredictionsText =
              m_OutputPredictionsTextBut.isSelected();
            String grph = null;   
            Evaluation eval = null;

            try {

              boolean incrementalLoader = (m_TestLoader instanceof IncrementalConverter);
              if (m_TestLoader != null && m_TestLoader.getStructure() != null) {
                m_TestLoader.reset();
                source = new DataSource(m_TestLoader);
                userTestStructure = source.getStructure();
              }
              // Check the test instance compatibility
              if (source == null) {
                throw new Exception("No user test set has been specified");
              }
              if (trainHeader != null) {
                if (trainHeader.classIndex() >
                    userTestStructure.numAttributes()-1)
                  throw new Exception("Train and test set are not compatible");
                userTestStructure.setClassIndex(trainHeader.classIndex());
                if (!trainHeader.equalHeaders(userTestStructure)) {
                  throw new Exception("Train and test set are not compatible");
                }
              } else {
                userTestStructure.
                  setClassIndex(userTestStructure.numAttributes()-1);
              }
              if (m_Log instanceof TaskLogger) {
                ((TaskLogger)m_Log).taskStarted();
              }
              m_Log.statusMessage("Evaluating on test data...");
              m_Log.logMessage("Re-evaluating classifier (" + name
                               + ") on test set");
              eval = new Evaluation(userTestStructure, costMatrix);
              eval.useNoPriors();
     
              // set up the structure of the plottable instances for
              // visualization if selected
              if (saveVis) {
                predInstances = setUpVisualizableInstances(userTestStructure);
                predInstances.setClassIndex(userTestStructure.classIndex()+1);
              }
     
              outBuff.append("\n=== Re-evaluation on test set ===\n\n");
              outBuff.append("User supplied test set\n")
              outBuff.append("Relation:     "
                             + userTestStructure.relationName() + '\n');
              if (incrementalLoader)
          outBuff.append("Instances:     unknown (yet). Reading incrementally\n");
              else
          outBuff.append("Instances:    " + source.getDataSet().numInstances() + "\n");
              outBuff.append("Attributes:   "
            + userTestStructure.numAttributes()
            + "\n\n");
              if (trainHeader == null)
                outBuff.append("NOTE - if test set is not compatible then results are "
                               + "unpredictable\n\n");

              if (outputPredictionsText) {
                outBuff.append("=== Predictions on test set ===\n\n");
                outBuff.append(" inst#,    actual, predicted, error");
                if (userTestStructure.classAttribute().isNominal()) {
                  outBuff.append(", probability distribution");
                }
                outBuff.append("\n");
              }

        Instance instance;
        int jj = 0;
        while (source.hasMoreElements(userTestStructure)) {
    instance = source.nextElement(userTestStructure);
    processClassifierPrediction(instance, classifier,
        eval, predInstances, plotShape,
        plotSize);
    if (outputPredictionsText) {
      outBuff.append(predictionText(classifier, instance, jj+1));
View Full Code Here

    throws Exception {

    String trainFileString = "";
    String graphFileName = "";
    AssociatorEvaluation eval;
    DataSource loader;

    // help?
    if (Utils.getFlag('h', options))
      throw new Exception("\nHelp requested.\n" + makeOptionString(associator));
   
    try {
      // general options
      trainFileString = Utils.getOption('t', options);
      if (trainFileString.length() == 0)
  throw new Exception("No training file given!");
      loader = new DataSource(trainFileString);

      graphFileName = Utils.getOption('g', options);

      // associator specific options
      if (associator instanceof OptionHandler) {
        ((OptionHandler) associator).setOptions(options);
      }
     
      // left-over options?
      Utils.checkForRemainingOptions(options);
    }
    catch (Exception e) {
      throw new Exception(
    "\nWeka exception: "
    + e.getMessage() + "\n"
    + makeOptionString(associator));
    }
   
    // load file and build associations
    eval = new AssociatorEvaluation();
    String results = eval.evaluate(associator, new Instances(loader.getDataSet()));

    // If associator is drawable output string describing graph
    if ((associator instanceof Drawable) && (graphFileName.length() != 0)) {
      BufferedWriter writer = new BufferedWriter(new FileWriter(graphFileName));
      writer.write(((Drawable) associator).graph());
View Full Code Here

  protected Instances process(Instances instances) throws Exception {
    // initializing necessary?
    if (!m_Initialized) {
      // do we have a file to initialize with?
      if ((getInitFile() != null) && getInitFile().isFile()) {
  DataSource source = new DataSource(getInitFile().getAbsolutePath());
  Instances data = source.getDataSet();
  m_InitFileClassIndex.setUpper(data.numAttributes() - 1);
  data.setClassIndex(m_InitFileClassIndex.getIndex());
  initFilter(data);
      }
      else {
View Full Code Here

    public Instances readFromMongoDB(String csv) throws Exception {
        _m2v = new Mongo2CSV(_host, _port, _db, _coll);
        _m2v.setFields(_fields);
        _m2v.writeCSV(csv);
        _m2v.close();
        _source = new DataSource(csv);
        _instances = _source.getDataSet();
        return _instances;
    }
View Full Code Here

    catch (Exception e) {
      throw  new Exception('\n' + e.getMessage()
         + makeOptionString(ASEvaluator, searchMethod));
    }

    DataSource source = new DataSource(trainFileName);
    train = source.getDataSet();
    return SelectAttributes(ASEvaluator, options, train);
  }
View Full Code Here

    try {
      Instances i;
      // read from stdin and print statistics
      if (args.length == 0) {
  DataSource source = new DataSource(System.in);
  i = source.getDataSet();
  System.out.println(i.toSummaryString());
      }
      // read file and print statistics
      else if ((args.length == 1) && (!args[0].equals("-h")) && (!args[0].equals("help"))) {
  DataSource source = new DataSource(args[0]);
  i = source.getDataSet();
  System.out.println(i.toSummaryString());
      }
      // read two files, merge them and print result to stdout
      else if ((args.length == 3) && (args[0].toLowerCase().equals("merge"))) {
  DataSource source1 = new DataSource(args[1]);
  DataSource source2 = new DataSource(args[2]);
  i = Instances.mergeInstances(source1.getDataSet(), source2.getDataSet());
  System.out.println(i);
      }
      // read two files, append them and print result to stdout
      else if ((args.length == 3) && (args[0].toLowerCase().equals("append"))) {
  DataSource source1 = new DataSource(args[1]);
  DataSource source2 = new DataSource(args[2]);
  String msg = source1.getStructure().equalHeadersMsg(source2.getStructure());
  if (msg != null)
    throw new Exception("The two datasets have different headers:\n" + msg);
  Instances structure = source1.getStructure();
  System.out.println(source1.getStructure());
  while (source1.hasMoreElements(structure))
    System.out.println(source1.nextElement(structure));
  structure = source2.getStructure();
  while (source2.hasMoreElements(structure))
    System.out.println(source2.nextElement(structure));
      }
      // read two files and compare their headers
      else if ((args.length == 3) && (args[0].toLowerCase().equals("headers"))) {
  DataSource source1 = new DataSource(args[1]);
  DataSource source2 = new DataSource(args[2]);
  String msg = source1.getStructure().equalHeadersMsg(source2.getStructure());
  if (msg == null)
    System.out.println("Headers match");
  else
    System.out.println("Headers don't match:\n" + msg);
      }
      // read file and seed value, randomize data and print result to stdout
      else if ((args.length == 3) && (args[0].toLowerCase().equals("randomize"))) {
  DataSource source = new DataSource(args[2]);
  i = source.getDataSet();
  i.randomize(new Random(Integer.parseInt(args[1])));
  System.out.println(i);
      }
      // wrong parameters or help
      else {
View Full Code Here

    boolean noOutput = false,
    trainStatistics = true,
    printMargins = false, printComplexityStatistics = false,
    printGraph = false, classStatistics = false, printSource = false;
    StringBuffer text = new StringBuffer();
    DataSource trainSource = null, testSource = null;
    ObjectInputStream objectInputStream = null;
    BufferedInputStream xmlInputStream = null;
    CostMatrix costMatrix = null;
    StringBuffer schemeOptionsText = null;
    long trainTimeStart = 0, trainTimeElapsed = 0,
    testTimeStart = 0, testTimeElapsed = 0;
    String xml = "";
    String[] optionsTmp = null;
    Classifier classifierBackup;
    Classifier classifierClassifications = null;
    int actualClassIndex = -1// 0-based class index
    String splitPercentageString = "";
    double splitPercentage = -1;
    boolean preserveOrder = false;
    boolean trainSetPresent = false;
    boolean testSetPresent = false;
    boolean discardPredictions = false;
    String thresholdFile;
    String thresholdLabel;
    StringBuffer predsBuff = null; // predictions from cross-validation
    AbstractOutput classificationOutput = null;

    // help requested?
    if (Utils.getFlag("h", options) || Utils.getFlag("help", options)) {

      // global info requested as well?
      boolean globalInfo = Utils.getFlag("synopsis", options) ||
        Utils.getFlag("info", options);

      throw new Exception("\nHelp requested."
          + makeOptionString(classifier, globalInfo));
    }

    try {
      // do we get the input from XML instead of normal parameters?
      xml = Utils.getOption("xml", options);
      if (!xml.equals(""))
        options = new XMLOptions(xml).toArray();

      // is the input model only the XML-Options, i.e. w/o built model?
      optionsTmp = new String[options.length];
      for (int i = 0; i < options.length; i++)
        optionsTmp[i] = options[i];

      String tmpO = Utils.getOption('l', optionsTmp);
      //if (Utils.getOption('l', optionsTmp).toLowerCase().endsWith(".xml")) {
      if (tmpO.endsWith(".xml")) {
        // try to load file as PMML first
        boolean success = false;
        try {
          PMMLModel pmmlModel = PMMLFactory.getPMMLModel(tmpO);
          if (pmmlModel instanceof PMMLClassifier) {
            classifier = ((PMMLClassifier)pmmlModel);
            success = true;
          }
        } catch (IllegalArgumentException ex) {
          success = false;
        }
        if (!success) {
          // load options from serialized data  ('-l' is automatically erased!)
          XMLClassifier xmlserial = new XMLClassifier();
          OptionHandler cl = (OptionHandler) xmlserial.read(Utils.getOption('l', options));

          // merge options
          optionsTmp = new String[options.length + cl.getOptions().length];
          System.arraycopy(cl.getOptions(), 0, optionsTmp, 0, cl.getOptions().length);
          System.arraycopy(options, 0, optionsTmp, cl.getOptions().length, options.length);
          options = optionsTmp;
        }
      }

      noCrossValidation = Utils.getFlag("no-cv", options);
      // Get basic options (options the same for all schemes)
      classIndexString = Utils.getOption('c', options);
      if (classIndexString.length() != 0) {
        if (classIndexString.equals("first"))
          classIndex = 1;
        else if (classIndexString.equals("last"))
          classIndex = -1;
        else
          classIndex = Integer.parseInt(classIndexString);
      }
      trainFileName = Utils.getOption('t', options);
      objectInputFileName = Utils.getOption('l', options);
      objectOutputFileName = Utils.getOption('d', options);
      testFileName = Utils.getOption('T', options);
      foldsString = Utils.getOption('x', options);
      if (foldsString.length() != 0) {
        folds = Integer.parseInt(foldsString);
      }
      seedString = Utils.getOption('s', options);
      if (seedString.length() != 0) {
        seed = Integer.parseInt(seedString);
      }
      if (trainFileName.length() == 0) {
        if (objectInputFileName.length() == 0) {
          throw new Exception("No training file and no object input file given.");
        }
        if (testFileName.length() == 0) {
          throw new Exception("No training file and no test file given.");
        }
      } else if ((objectInputFileName.length() != 0) &&
          ((!(classifier instanceof UpdateableClassifier)) ||
           (testFileName.length() == 0))) {
        throw new Exception("Classifier not incremental, or no " +
            "test file provided: can't "+
            "use both train and model file.");
      }
      try {
        if (trainFileName.length() != 0) {
          trainSetPresent = true;
          trainSource = new DataSource(trainFileName);
        }
        if (testFileName.length() != 0) {
          testSetPresent = true;
          testSource = new DataSource(testFileName);
        }
        if (objectInputFileName.length() != 0) {
          if (objectInputFileName.endsWith(".xml")) {
            // if this is the case then it means that a PMML classifier was
            // successfully loaded earlier in the code
            objectInputStream = null;
            xmlInputStream = null;
          } else {
            InputStream is = new FileInputStream(objectInputFileName);
            if (objectInputFileName.endsWith(".gz")) {
              is = new GZIPInputStream(is);
            }
            // load from KOML?
            if (!(objectInputFileName.endsWith(".koml") && KOML.isPresent()) ) {
              objectInputStream = new ObjectInputStream(is);
              xmlInputStream    = null;
            }
            else {
              objectInputStream = null;
              xmlInputStream    = new BufferedInputStream(is);
            }
          }
        }
      } catch (Exception e) {
        throw new Exception("Can't open file " + e.getMessage() + '.');
      }
      if (testSetPresent) {
        template = test = testSource.getStructure();
        if (classIndex != -1) {
          test.setClassIndex(classIndex - 1);
        } else {
          if ( (test.classIndex() == -1) || (classIndexString.length() != 0) )
            test.setClassIndex(test.numAttributes() - 1);
        }
        actualClassIndex = test.classIndex();
      }
      else {
        // percentage split
        splitPercentageString = Utils.getOption("split-percentage", options);
        if (splitPercentageString.length() != 0) {
          if (foldsString.length() != 0)
            throw new Exception(
                "Percentage split cannot be used in conjunction with "
                + "cross-validation ('-x').");
          splitPercentage = Double.parseDouble(splitPercentageString);
          if ((splitPercentage <= 0) || (splitPercentage >= 100))
            throw new Exception("Percentage split value needs be >0 and <100.");
        }
        else {
          splitPercentage = -1;
        }
        preserveOrder = Utils.getFlag("preserve-order", options);
        if (preserveOrder) {
          if (splitPercentage == -1)
            throw new Exception("Percentage split ('-percentage-split') is missing.");
        }
        // create new train/test sources
        if (splitPercentage > 0) {
          testSetPresent = true;
          Instances tmpInst = trainSource.getDataSet(actualClassIndex);
          if (!preserveOrder)
            tmpInst.randomize(new Random(seed));
          int trainSize =
            (int) Math.round(tmpInst.numInstances() * splitPercentage / 100);
          int testSize  = tmpInst.numInstances() - trainSize;
          Instances trainInst = new Instances(tmpInst, 0, trainSize);
          Instances testInst  = new Instances(tmpInst, trainSize, testSize);
          trainSource = new DataSource(trainInst);
          testSource  = new DataSource(testInst);
          template = test = testSource.getStructure();
          if (classIndex != -1) {
            test.setClassIndex(classIndex - 1);
          } else {
            if ( (test.classIndex() == -1) || (classIndexString.length() != 0) )
              test.setClassIndex(test.numAttributes() - 1);
          }
          actualClassIndex = test.classIndex();
        }
      }
      if (trainSetPresent) {
        template = train = trainSource.getStructure();
        if (classIndex != -1) {
          train.setClassIndex(classIndex - 1);
        } else {
          if ( (train.classIndex() == -1) || (classIndexString.length() != 0) )
            train.setClassIndex(train.numAttributes() - 1);
        }
        actualClassIndex = train.classIndex();
        if (!(classifier instanceof weka.classifiers.misc.InputMappedClassifier)) {
          if ((testSetPresent) && !test.equalHeaders(train)) {
            throw new IllegalArgumentException("Train and test file not compatible!\n" + test.equalHeadersMsg(train));
          }
        }
      }
      if (template == null) {
        throw new Exception("No actual dataset provided to use as template");
      }
      costMatrix = handleCostOption(
          Utils.getOption('m', options), template.numClasses());

      classStatistics = Utils.getFlag('i', options);
      noOutput = Utils.getFlag('o', options);
      trainStatistics = !Utils.getFlag('v', options);
      printComplexityStatistics = Utils.getFlag('k', options);
      printMargins = Utils.getFlag('r', options);
      printGraph = Utils.getFlag('g', options);
      sourceClass = Utils.getOption('z', options);
      printSource = (sourceClass.length() != 0);
      thresholdFile = Utils.getOption("threshold-file", options);
      thresholdLabel = Utils.getOption("threshold-label", options);

      String classifications = Utils.getOption("classifications", options);
      String classificationsOld = Utils.getOption("p", options);
      if (classifications.length() > 0) {
        noOutput = true;
        classificationOutput = AbstractOutput.fromCommandline(classifications);
        if (classificationOutput == null)
          throw new Exception("Failed to instantiate class for classification output: " + classifications);
        classificationOutput.setHeader(template);
      }
      // backwards compatible with old "-p range" and "-distribution" options
      else if (classificationsOld.length() > 0) {
        noOutput = true;
        classificationOutput = new PlainText();
        classificationOutput.setHeader(template);
        if (!classificationsOld.equals("0"))
          classificationOutput.setAttributes(classificationsOld);
        classificationOutput.setOutputDistribution(Utils.getFlag("distribution", options));
      }
      // -distribution flag needs -p option
      else {
        if (Utils.getFlag("distribution", options))
          throw new Exception("Cannot print distribution without '-p' option!");
      }
      discardPredictions = Utils.getFlag("no-predictions", options);
      if (discardPredictions && (classificationOutput != null))
  throw new Exception("Cannot discard predictions ('-no-predictions') and output predictions at the same time ('-classifications/-p')!");

      // if no training file given, we don't have any priors
      if ( (!trainSetPresent) && (printComplexityStatistics) )
        throw new Exception("Cannot print complexity statistics ('-k') without training file ('-t')!");

      // If a model file is given, we can't process
      // scheme-specific options
      if (objectInputFileName.length() != 0) {
        Utils.checkForRemainingOptions(options);
      } else {

        // Set options for classifier
        if (classifier instanceof OptionHandler) {
          for (int i = 0; i < options.length; i++) {
            if (options[i].length() != 0) {
              if (schemeOptionsText == null) {
                schemeOptionsText = new StringBuffer();
              }
              if (options[i].indexOf(' ') != -1) {
                schemeOptionsText.append('"' + options[i] + "\" ");
              } else {
                schemeOptionsText.append(options[i] + " ");
              }
            }
          }
          ((OptionHandler)classifier).setOptions(options);
        }
      }

      Utils.checkForRemainingOptions(options);
    } catch (Exception e) {
      throw new Exception("\nWeka exception: " + e.getMessage()
          + makeOptionString(classifier, false));
    }

    if (objectInputFileName.length() != 0) {
      // Load classifier from file
      if (objectInputStream != null) {
        classifier = (Classifier) objectInputStream.readObject();
        // try and read a header (if present)
        Instances savedStructure = null;
        try {
          savedStructure = (Instances) objectInputStream.readObject();
        } catch (Exception ex) {
          // don't make a fuss
        }
        if (savedStructure != null) {
          // test for compatibility with template
          if (!template.equalHeaders(savedStructure)) {
            throw new Exception("training and test set are not compatible\n" + template.equalHeadersMsg(savedStructure));
          }
        }
        objectInputStream.close();
      }
      else if (xmlInputStream != null) {
        // whether KOML is available has already been checked (objectInputStream would null otherwise)!
        classifier = (Classifier) KOML.read(xmlInputStream);
        xmlInputStream.close();
      }
    }

    // Setup up evaluation objects
    Evaluation trainingEvaluation = new Evaluation(new Instances(template, 0), costMatrix);
    Evaluation testingEvaluation = new Evaluation(new Instances(template, 0), costMatrix);
    if (classifier instanceof weka.classifiers.misc.InputMappedClassifier) {
      Instances mappedClassifierHeader =
        ((weka.classifiers.misc.InputMappedClassifier)classifier).
          getModelHeader(new Instances(template, 0));

      trainingEvaluation = new Evaluation(new Instances(mappedClassifierHeader, 0), costMatrix);
      testingEvaluation = new Evaluation(new Instances(mappedClassifierHeader, 0), costMatrix);
    }
    trainingEvaluation.setDiscardPredictions(discardPredictions);
    testingEvaluation.setDiscardPredictions(discardPredictions);

    // disable use of priors if no training file given
    if (!trainSetPresent)
      testingEvaluation.useNoPriors();

    // backup of fully setup classifier for cross-validation
    classifierBackup = AbstractClassifier.makeCopy(classifier);

    // Build the classifier if no object file provided
    if ((classifier instanceof UpdateableClassifier) &&
        (testSetPresent || noCrossValidation) &&
        (costMatrix == null) &&
        (trainSetPresent)) {
      // Build classifier incrementally
      trainingEvaluation.setPriors(train);
      testingEvaluation.setPriors(train);
      trainTimeStart = System.currentTimeMillis();
      if (objectInputFileName.length() == 0) {
        classifier.buildClassifier(train);
      }
      Instance trainInst;
      while (trainSource.hasMoreElements(train)) {
        trainInst = trainSource.nextElement(train);
        trainingEvaluation.updatePriors(trainInst);
        testingEvaluation.updatePriors(trainInst);
        ((UpdateableClassifier)classifier).updateClassifier(trainInst);
      }
      trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
    } else if (objectInputFileName.length() == 0) {
      // Build classifier in one go
      tempTrain = trainSource.getDataSet(actualClassIndex);

      if (classifier instanceof weka.classifiers.misc.InputMappedClassifier &&
          !trainingEvaluation.getHeader().equalHeaders(tempTrain)) {
        // we need to make a new dataset that maps the training instances to
        // the structure expected by the mapped classifier - this is only
        // to ensure that the structure and priors computed by the *testing*
        // evaluation object is correct with respect to the mapped classifier
        Instances mappedClassifierDataset =
          ((weka.classifiers.misc.InputMappedClassifier)classifier).
            getModelHeader(new Instances(template, 0));
        for (int zz = 0; zz < tempTrain.numInstances(); zz++) {
          Instance mapped = ((weka.classifiers.misc.InputMappedClassifier)classifier).
            constructMappedInstance(tempTrain.instance(zz));
          mappedClassifierDataset.add(mapped);
        }
        tempTrain = mappedClassifierDataset;
      }

      trainingEvaluation.setPriors(tempTrain);
      testingEvaluation.setPriors(tempTrain);
      trainTimeStart = System.currentTimeMillis();
      classifier.buildClassifier(tempTrain);
      trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
    }

    // backup of fully trained classifier for printing the classifications
    if (classificationOutput != null) {
      classifierClassifications = AbstractClassifier.makeCopy(classifier);
      if (classifier instanceof weka.classifiers.misc.InputMappedClassifier) {
        classificationOutput.setHeader(trainingEvaluation.getHeader());
      }
    }

    // Save the classifier if an object output file is provided
    if (objectOutputFileName.length() != 0) {
      OutputStream os = new FileOutputStream(objectOutputFileName);
      // binary
      if (!(objectOutputFileName.endsWith(".xml") || (objectOutputFileName.endsWith(".koml") && KOML.isPresent()))) {
        if (objectOutputFileName.endsWith(".gz")) {
          os = new GZIPOutputStream(os);
        }
        ObjectOutputStream objectOutputStream = new ObjectOutputStream(os);
        objectOutputStream.writeObject(classifier);
        if (template != null) {
          objectOutputStream.writeObject(template);
        }
        objectOutputStream.flush();
        objectOutputStream.close();
      }
      // KOML/XML
      else {
        BufferedOutputStream xmlOutputStream = new BufferedOutputStream(os);
        if (objectOutputFileName.endsWith(".xml")) {
          XMLSerialization xmlSerial = new XMLClassifier();
          xmlSerial.write(xmlOutputStream, classifier);
        }
        else
          // whether KOML is present has already been checked
          // if not present -> ".koml" is interpreted as binary - see above
          if (objectOutputFileName.endsWith(".koml")) {
            KOML.write(xmlOutputStream, classifier);
          }
        xmlOutputStream.close();
      }
    }

    // If classifier is drawable output string describing graph
    if ((classifier instanceof Drawable) && (printGraph)){
      return ((Drawable)classifier).graph();
    }

    // Output the classifier as equivalent source
    if ((classifier instanceof Sourcable) && (printSource)){
      return wekaStaticWrapper((Sourcable) classifier, sourceClass);
    }

    // Output model
    if (!(noOutput || printMargins)) {
      if (classifier instanceof OptionHandler) {
        if (schemeOptionsText != null) {
          text.append("\nOptions: "+schemeOptionsText);
          text.append("\n");
        }
      }
      text.append("\n" + classifier.toString() + "\n");
    }

    if (!printMargins && (costMatrix != null)) {
      text.append("\n=== Evaluation Cost Matrix ===\n\n");
      text.append(costMatrix.toString());
    }

    // Output test instance predictions only
    if (classificationOutput != null) {
      DataSource source = testSource;
      predsBuff = new StringBuffer();
      classificationOutput.setBuffer(predsBuff);
      // no test set -> use train set
      if (source == null && noCrossValidation) {
        source = trainSource;
View Full Code Here

    boolean     result;
    Classifier  cls;
    Classifier  code;
    int         i;
    Instances   data;
    DataSource  source;
    boolean     numeric;
    boolean     different;
    double      predClassifier;
    double      predSource;

    result = true;

    // a few checks
    if (getClassifier() == null)
      throw new Exception("No classifier set!");
    if (getSourceCode() == null)
      throw new Exception("No source code set!");
    if (getDataset() == null)
      throw new Exception("No dataset set!");
    if (!getDataset().exists())
      throw new Exception(
          "Dataset '" + getDataset().getAbsolutePath() + "' does not exist!");

    // load data
    source = new DataSource(getDataset().getAbsolutePath());
    data   = source.getDataSet();
    if (getClassIndex() == -1)
      data.setClassIndex(data.numAttributes() - 1);
    else
      data.setClassIndex(getClassIndex());
    numeric = data.classAttribute().isNumeric();
View Full Code Here

   * @throws Exception  if something goes wrong
   */
  public static void main(String[] args) throws Exception {
    String     tmpStr;
    String    filename;
    DataSource     source;
    Instances     data;
    int     classIndex;
    Capabilities   cap;
    Iterator    iter;

    if (args.length == 0) {
      System.out.println(
    "\nUsage: " + Capabilities.class.getName()
    + " -file <dataset> [-c <class index>]\n");
      return;
    }
   
    // get parameters
    tmpStr = Utils.getOption("file", args);
    if (tmpStr.length() == 0)
      throw new Exception("No file provided with option '-file'!");
    else
      filename = tmpStr;

    tmpStr = Utils.getOption("c", args);
    if (tmpStr.length() != 0) {
      if (tmpStr.equals("first"))
  classIndex = 0;
      else if (tmpStr.equals("last"))
  classIndex = -2// last
      else
  classIndex = Integer.parseInt(tmpStr) - 1;
    }
    else {
      classIndex = -3// not set
    }
   
    // load data
    source = new DataSource(filename);
    if (classIndex == -3)
      data = source.getDataSet();
    else if (classIndex == -2)
      data = source.getDataSet(source.getStructure().numAttributes() - 1);
    else
      data = source.getDataSet(classIndex);

    // determine and print capabilities
    cap = forInstances(data);
    System.out.println("File: " + filename);
    System.out.println("Class index: " + ((data.classIndex() == -1) ? "not set" : "" + (data.classIndex() + 1)));
View Full Code Here

TOP

Related Classes of weka.core.converters.ConverterUtils.DataSource

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.