Package weka.classifiers.trees.j48

Examples of weka.classifiers.trees.j48.Stats


    ModelSelection modSelection;  

    if (m_binarySplits)
      modSelection = new BinC45ModelSelection(m_minNumObj, instances, m_useMDLcorrection);
    else
      modSelection = new C45ModelSelection(m_minNumObj, instances, m_useMDLcorrection);
    if (!m_reducedErrorPruning)
      m_root = new C45PruneableClassifierTree(modSelection, !m_unpruned, m_CF,
                                              m_subtreeRaising, !m_noCleanup, m_collapseTree);
    else
      m_root = new PruneableClassifierTree(modSelection, !m_unpruned, m_numFolds,
View Full Code Here


    //create ModelSelection object, either for splits on the residuals or for splits on the class value
    ModelSelection modSelection; 
    if (m_splitOnResiduals) {
      modSelection = new ResidualModelSelection(minNumInstances);
    } else {
      modSelection = new C45ModelSelection(minNumInstances, filteredData, true);
    }
 
    //create tree root
    m_tree = new LMTNode(modSelection, m_numBoostingIterations, m_fastRegression,
       m_errorOnProbabilities, m_minNumInstances, m_weightTrimBeta, m_useAIC);
View Full Code Here

  public Capabilities getCapabilities() {
    Capabilities      result;
   
    try {
      if (!m_reducedErrorPruning)
        result = new C45PruneableClassifierTree(null, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup).getCapabilities();
      else
        result = new PruneableClassifierTree(null, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed).getCapabilities();
    }
    catch (Exception e) {
      result = new Capabilities(this);
View Full Code Here

    if (m_binarySplits)
      modSelection = new BinC45ModelSelection(m_minNumObj, instances);
    else
      modSelection = new C45ModelSelection(m_minNumObj, instances);
    if (!m_reducedErrorPruning)
      m_root = new C45PruneableClassifierTree(modSelection, !m_unpruned, m_CF,
              m_subtreeRaising, !m_noCleanup);
    else
      m_root = new PruneableClassifierTree(modSelection, !m_unpruned, m_numFolds,
             !m_noCleanup, m_Seed);
    m_root.buildClassifier(instances);
View Full Code Here

  public Capabilities getCapabilities() {
    Capabilities result;

    try {
      if( !m_reducedErrorPruning ) {
        result = new C45PruneableClassifierTree( null, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup ).getCapabilities();
      } else {
        result = new PruneableClassifierTree( null, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed ).getCapabilities();
      }
    } catch( Exception e ) {
      result = new Capabilities( this );
View Full Code Here

   */
  public void buildClassifier( Instances instances ) throws Exception {
    ModelSelection modSelection = new HTreeModelSelection( m_minNumObj, instances );

    if( !m_reducedErrorPruning ) {
      m_root = new C45PruneableClassifierTree( modSelection, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup );
    } else {
      m_root = new PruneableClassifierTree( modSelection, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed );
    }
    m_root.buildClassifier( instances );
  }
View Full Code Here

  public Capabilities getCapabilities() {
    Capabilities result;

    try {
      if( !m_reducedErrorPruning ) {
        result = new C45PruneableClassifierTree( null, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup ).getCapabilities();
      } else {
        result = new PruneableClassifierTree( null, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed ).getCapabilities();
      }
    } catch( Exception e ) {
      result = new Capabilities( this );
View Full Code Here

   */
  public void buildClassifier( Instances instances ) throws Exception {
    ModelSelection modSelection = new HDIGModelSelection( m_minNumObj, instances );

    if( !m_reducedErrorPruning ) {
      m_root = new C45PruneableClassifierTree( modSelection, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup );
    } else {
      m_root = new PruneableClassifierTree( modSelection, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed );
    }
    m_root.buildClassifier( instances );
  }
View Full Code Here

  public Capabilities getCapabilities() {
    Capabilities result;

    try {
      if( !m_reducedErrorPruning ) {
        result = new C45PruneableClassifierTree( null, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup ).getCapabilities();
      } else {
        result = new PruneableClassifierTree( null, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed ).getCapabilities();
      }
    } catch( Exception e ) {
      result = new Capabilities( this );
View Full Code Here

      modSelection = new BinC45ModelSelection( m_minNumObj, instances );
    } else {
      modSelection = new C45ModelSelection( m_minNumObj, instances );
    }
    if( !m_reducedErrorPruning ) {
      m_root = new C45PruneableClassifierTree( modSelection, !m_unpruned, m_CF,
          m_subtreeRaising, !m_noCleanup );
    } else {
      m_root = new PruneableClassifierTree( modSelection, !m_unpruned, m_numFolds,
          !m_noCleanup, m_Seed );
    }
View Full Code Here

TOP

Related Classes of weka.classifiers.trees.j48.Stats

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.