if (m_KernelIsLinear) {
m_sparseWeights = new double[0];
m_sparseIndices = new int[0];
m_class = null;
} else {
m_supportVectors = new SMOset(0);
m_alpha = new double[0];
m_class = new double[0];
}
// Fit sigmoid if requested
if (fitLogistic) {
fitLogistic(insts, cl1, cl2, numFolds, new Random(randomSeed));
}
return;
}
// Set the reference to the data
m_data = insts;
// If machine is linear, reserve space for weights
if (m_KernelIsLinear) {
m_weights = new double[m_data.numAttributes()];
} else {
m_weights = null;
}
// Initialize alpha array to zero
m_alpha = new double[m_data.numInstances()];
// Initialize sets
m_supportVectors = new SMOset(m_data.numInstances());
m_I0 = new SMOset(m_data.numInstances());
m_I1 = new SMOset(m_data.numInstances());
m_I2 = new SMOset(m_data.numInstances());
m_I3 = new SMOset(m_data.numInstances());
m_I4 = new SMOset(m_data.numInstances());
// Clean out some instance variables
m_sparseWeights = null;
m_sparseIndices = null;