weka.classifiers.pmml.consumer.PMMLClassifier)) {
outBuff.append("NOTE - if test set is not compatible then results are "
+ "unpredictable\n\n");
}
AbstractOutput classificationOutput = null;
if (outputPredictionsText) {
classificationOutput = (AbstractOutput) m_ClassificationOutputEditor.getValue();
classificationOutput.setHeader(userTestStructure);
classificationOutput.setBuffer(outBuff);
/* classificationOutput.setAttributes("");
classificationOutput.setOutputDistribution(false);*/
// classificationOutput.printHeader();
}
// make adjustments if the classifier is an InputMappedClassifier
eval = setupEval(eval, classifierToUse, userTestStructure, costMatrix,
plotInstances, classificationOutput, false);
eval.useNoPriors();
if (outputPredictionsText) {
printPredictionsHeader(outBuff, classificationOutput, "user test set");
}
Instance instance;
int jj = 0;
while (source.hasMoreElements(userTestStructure)) {
instance = source.nextElement(userTestStructure);
plotInstances.process(instance, classifierToUse, eval);
if (outputPredictionsText) {
classificationOutput.printClassification(classifierToUse, instance, jj);
}
if ((++jj % 100) == 0) {
m_Log.statusMessage("Evaluating on test data. Processed "
+jj+" instances...");
}
}
if (outputPredictionsText)
classificationOutput.printFooter();
if (outputPredictionsText && classificationOutput.generatesOutput()) {
outBuff.append("\n");
}
if (outputSummary) {
outBuff.append(eval.toSummaryString(outputEntropy) + "\n");