Package weka.classifiers.evaluation

Examples of weka.classifiers.evaluation.ThresholdCurve


                    notifyVisualizableErrorListeners(vel);
                  }
                 

      if (ce.getTestSet().getDataSet().classAttribute().isNominal()) {
        ThresholdCurve tc = new ThresholdCurve();
        Instances result = tc.getCurve(m_eval.predictions(), 0);
        result.
          setRelationName(ce.getTestSet().getDataSet().relationName());
        PlotData2D pd = new PlotData2D(result);
        pd.setPlotName(textTitle+" ("
           +ce.getTestSet().getDataSet().
View Full Code Here


    // Check if any predictions have been collected
    if (m_Predictions == null) {
      return Instance.missingValue();
    } else {
      ThresholdCurve tc = new ThresholdCurve();
      Instances result = tc.getCurve(m_Predictions, classIndex);
      return ThresholdCurve.getROCArea(result);
    }
  }
View Full Code Here

 
  if (valueIndex != null) {
    valueIndex.setUpper(inst.classAttribute().numValues() - 1);
  }
 
  ThresholdCurve tc = new ThresholdCurve();
  EvaluationUtils eu = new EvaluationUtils();
  FastVector predictions = new FastVector();
  for (int i = 0; i < runs; i++) {
    eu.setSeed(seed + i);
    predictions.appendElements(eu.getCVPredictions(classifier, inst, folds));
  }
 
  if (valueIndex != null)
    result = tc.getCurve(predictions, valueIndex.getIndex());
  else
    result = tc.getCurve(predictions);
      }
     
      // setup GUI
      ThresholdVisualizePanel vmc = new ThresholdVisualizePanel();
      vmc.setROCString("(Area under ROC = " +
View Full Code Here

  JMenuItem clv = new JMenuItem(classAtt.value(i));
  final int classValue = i;
  clv.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
        try {
    ThresholdCurve tc = new ThresholdCurve();
    Instances result = tc.getCurve(preds, classValue);
    //VisualizePanel vmc = new VisualizePanel();
    ThresholdVisualizePanel vmc = new ThresholdVisualizePanel();
    vmc.setROCString("(Area under ROC = " +
         Utils.doubleToString(ThresholdCurve.getROCArea(result), 4) + ")");
    vmc.setLog(m_Log);
View Full Code Here

   *
   * @param predictions a <code>FastVector</code> containing the predictions.
   */
  protected void findThreshold(FastVector predictions) {

    Instances curve = (new ThresholdCurve()).getCurve(predictions, m_DesignatedClass);

    double low = 1.0;
    double high = 0.0;

    //System.err.println(curve);
View Full Code Here

    // Check if any predictions have been collected
    if (m_Predictions == null) {
      return Utils.missingValue();
    } else {
      ThresholdCurve tc = new ThresholdCurve();
      Instances result = tc.getCurve(m_Predictions, classIndex);
      return ThresholdCurve.getROCArea(result);
    }
  }
View Full Code Here

      if (thresholdLabel.length() != 0)
        labelIndex = template.classAttribute().indexOfValue(thresholdLabel);
      if (labelIndex == -1)
        throw new IllegalArgumentException(
            "Class label '" + thresholdLabel + "' is unknown!");
      ThresholdCurve tc = new ThresholdCurve();
      Instances result = tc.getCurve(testingEvaluation.predictions(), labelIndex);
      DataSink.write(thresholdFile, result);
    }

    return text.toString();
  }
View Full Code Here

 
  if (valueIndex != null) {
    valueIndex.setUpper(inst.classAttribute().numValues() - 1);
  }
 
  ThresholdCurve tc = new ThresholdCurve();
  EvaluationUtils eu = new EvaluationUtils();
  FastVector predictions = new FastVector();
  for (int i = 0; i < runs; i++) {
    eu.setSeed(seed + i);
    predictions.appendElements(eu.getCVPredictions(classifier, inst, folds));
  }
 
  if (valueIndex != null)
    result = tc.getCurve(predictions, valueIndex.getIndex());
  else
    result = tc.getCurve(predictions);
      }
     
      // setup GUI
      ThresholdVisualizePanel vmc = new ThresholdVisualizePanel();
      vmc.setROCString("(Area under ROC = " +
View Full Code Here

        }


        if (testData.classAttribute().isNominal() &&
            m_thresholdListeners.size() > 0) {
          ThresholdCurve tc = new ThresholdCurve();
          Instances result = tc.getCurve(m_eval.predictions(), 0);
          result.
          setRelationName(testData.relationName());
          PlotData2D pd = new PlotData2D(result);
          String htmlTitle = "<html><font size=-2>"
            + textTitle;
View Full Code Here

  JMenuItem clv = new JMenuItem(classAtt.value(i));
  final int classValue = i;
  clv.addActionListener(new ActionListener() {
      public void actionPerformed(ActionEvent e) {
        try {
    ThresholdCurve tc = new ThresholdCurve();
    Instances result = tc.getCurve(preds, classValue);
    //VisualizePanel vmc = new VisualizePanel();
    ThresholdVisualizePanel vmc = new ThresholdVisualizePanel();
    vmc.setROCString("(Area under ROC = " +
         Utils.doubleToString(ThresholdCurve.getROCArea(result), 4) + ")");
    vmc.setLog(m_Log);
    vmc.setName(result.relationName()+". (Class value "+
          classAtt.value(classValue)+")");
    PlotData2D tempd = new PlotData2D(result);
    tempd.setPlotName(result.relationName());
    tempd.addInstanceNumberAttribute();
    // specify which points are connected
    boolean[] cp = new boolean[result.numInstances()];
    for (int n = 1; n < cp.length; n++)
      cp[n] = true;
    tempd.setConnectPoints(cp);
    // add plot
    vmc.addPlot(tempd);
    visualizeClassifierErrors(vmc);
        } catch (Exception ex) {
    ex.printStackTrace();
        }
        }
    });
    visThreshold.add(clv);
      }
    } else {
      visThreshold.setEnabled(false);
    }
    resultListMenu.add(visThreshold);
   
    JMenu visCostBenefit = new JMenu("Cost/Benefit analysis");
    if ((preds != null) && (classAtt != null) && (classAtt.isNominal())) {
      for (int i = 0; i < classAtt.numValues(); i++) {
        JMenuItem clv = new JMenuItem(classAtt.value(i));
        final int classValue = i;
        clv.addActionListener(new ActionListener() {
            public void actionPerformed(ActionEvent e) {
              try {
                ThresholdCurve tc = new ThresholdCurve();
                Instances result = tc.getCurve(preds, classValue);

                // Create a dummy class attribute with the chosen
                // class value as index 0 (if necessary).
                Attribute classAttToUse = classAtt;
                if (classValue != 0) {
View Full Code Here

TOP

Related Classes of weka.classifiers.evaluation.ThresholdCurve

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.