Package uk.ac.cam.ha293.tweetlabel.topics

Examples of uk.ac.cam.ha293.tweetlabel.topics.FullSVMClassification


  public void fillTextwiseJS() {
    //get clasifications
    System.out.println("Filling from Textwise classifications");
    FullTextwiseClassification[] classifications = new FullTextwiseClassification[d];
    for(long id : Tools.getCSVUserIDs()) {
      classifications[indexLookup.get(id)] = new FullTextwiseClassification(id,true);
    }
   
    //cosine similarities!
    for(int m=0; m<d; m++) {
      System.out.println("On row "+m);
View Full Code Here


          }
          classifications.add(classification);
        }
      } else if(topicType.equals("textwise")) {
        for(long id : Tools.getCSVUserIDs()) {
          FullTextwiseClassification c = new FullTextwiseClassification(id,true);
          Map<String,Double> classification = new HashMap<String,Double>();
          int topicCount = 0;
          for(String topic : c.getCategorySet()) {
            if(topicCount == topTopics) break;
            classification.put(topic, c.getScore(topic));
            topicCount++;
          }
          classifications.add(classification);
        }
      }
    } else {
      for(long id : Tools.getCSVUserIDs()) {
        FullLLDAClassification c = new FullLLDAClassification(topicType,alpha,id);
        Map<String,Double> classification = new HashMap<String,Double>();
        int topicCount = 0;
        for(String topic : c.getCategorySet()) {
          if(topicCount == topTopics) break;
          if(topic.equals("Other")) continue;
          classification.put(topic, c.getScore(topic));
          topicCount++;
        }
        classifications.add(classification);
      }
    }
View Full Code Here

              FullLLDAClassification llda = new FullLLDAClassification(topicType,alpha,false,reduction,uid);
              double sim = llda.cosineSimilarity(baseline);
              cosineSum += sim;
              cosineCount++;
            } else if(topicType.equals("textwiseproper")) {
              FullTextwiseClassification baseline = new FullTextwiseClassification(uid,true);
              FullLLDAClassification llda = new FullLLDAClassification(topicType,alpha,false,reduction,uid);
              double sim = llda.cosineSimilarity(baseline);
              cosineSum += sim;
              cosineCount++;
            }
View Full Code Here

            if(topic.equals("Other")) continue;
            kCount++;
            baselineTopicSet.add(topic);
          }
        } else if(topicType.equals("textwise")) {
          FullTextwiseClassification baseline = new FullTextwiseClassification(uid,true);
          kCount=0;
          for(String topic : baseline.getCategorySet()) {
            if(kCount == k) break;
            kCount++;
            baselineTopicSet.add(topic);
          }
        }
View Full Code Here

            if(topic.equals("Other")) continue;
            kCount++;
            baselineTopicSet.add(topic);
          }
        } else if(topicType.equals("textwise")) {
          FullTextwiseClassification baseline = new FullTextwiseClassification(uid,true);
          kCount=0;
          for(String topic : baseline.getCategorySet()) {
            if(kCount == k) break;
            kCount++;
            baselineTopicSet.add(topic);
          }
        }
View Full Code Here

        String topTopic = c.getCategorySet().toArray(new String[1])[0];
        if(topTopic.equals("Other") && c.getCategorySet().size() > 1topTopic = c.getCategorySet().toArray(new String[1])[1];
        else if(topTopic.equals("Other")) continue;
        topicCounts.put(topTopic,topicCounts.get(topTopic)+1);
      } else if(topicType.equals("textwise")) {
        FullTextwiseClassification c = new FullTextwiseClassification(uid,true);
        if(c.getCategorySet().size() == 0) continue;
        String topTopic = c.getCategorySet().toArray(new String[1])[0];
        topicCounts.put(topTopic,topicCounts.get(topTopic)+1);
      }
      count++;
    }
    double sum = 0.0;
View Full Code Here

          if(topic.equals("Other")) continue;
          kCount++;
          baselineTopicSet.add(topic);
        }
      } else if(topicType.equals("textwise")) {
        FullTextwiseClassification baseline = new FullTextwiseClassification(uid,true);
        kCount=0;
        for(String topic : baseline.getCategorySet()) {
          if(kCount == k) break;
          kCount++;
          baselineTopicSet.add(topic);
        }
      }
View Full Code Here

    Map<String,Integer> urlCategoryCounts = new HashMap<String,Integer>();
   
    for(SimpleTweet tweet : tweets) {
      //System.err.println(tweet.getText());
     
      TextwiseClassification textClassification = TextwiseClassifier.classify(tweet.getText(), false);
     
      textClassification.print();
     
      for(String category : textClassification.getCategories()) {
        if(textCategoryScores.containsKey(category)) {
          textCategoryScores.put(category, textCategoryScores.get(category) + textClassification.lookupScore(category));
          textCategoryCounts.put(category, textCategoryCounts.get(category) + 1);
        } else {
          textCategoryScores.put(category, textClassification.lookupScore(category));
          textCategoryCounts.put(category, 1);
        }
      }
     
      for(String url : tweet.getUrls()) {
       
        //System.err.println(url);
       
        TextwiseClassification urlClassification = TextwiseClassifier.classify(url, true);
       
        urlClassification.print();
       
        for(String category : urlClassification.getCategories()) {
          if(urlCategoryScores.containsKey(category)) {
            urlCategoryScores.put(category, urlCategoryScores.get(category) + urlClassification.lookupScore(category));
            urlCategoryCounts.put(category, urlCategoryCounts.get(category) + 1);
          } else {
            urlCategoryScores.put(category, urlClassification.lookupScore(category));
            urlCategoryCounts.put(category, 1);
          }
        }
      }
     
View Full Code Here

    }
   
    Map<String,Double> classifications = new HashMap<String,Double>();
    Map<String,Integer> classificationsCount = new HashMap<String,Integer>();
    for(int i=0; i<concat.length()-500; i+=500) {
      TextwiseClassification textClassification;
      if(i+500>=concat.length()) textClassification = TextwiseClassifier.classify(concat.substring(i,concat.length()), false);
      else textClassification = TextwiseClassifier.classify(concat.substring(i,i+500), false)
      Map<String,Double> scores = textClassification.getCategoryScores();
      for(String cat : textClassification.getCategories()) {
        if(classifications.containsKey(cat)) {
          classifications.put(cat,classifications.get(cat)+scores.get(cat));
          classificationsCount.put(cat,classificationsCount.get(cat)+1);
        } else {
          classifications.put(cat,scores.get(cat));
View Full Code Here

  public static void similarityStuff() {
    String[] topicTypes = {"alchemy","calais","textwiseproper"};
    double[] alphas = {0.25,0.5,0.75,1.0,1.25,1.5,1.75,2.0};
   
    for(double alpha : alphas) {
      SimilarityMatrix lda = SimilarityMatrix.load("lda-50-1000-100-"+alpha);
      for(String topicType : topicTypes) {
        SimilarityMatrix llda = SimilarityMatrix.load("llda-"+topicType+"-"+alpha);
        System.out.println(topicType+"\t"+alpha+"\t"+SpearmanRank.srcc(lda,llda));
      }
    }

   
View Full Code Here

TOP

Related Classes of uk.ac.cam.ha293.tweetlabel.topics.FullSVMClassification

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.