Examples of TSEvaluation


Examples of weka.classifiers.timeseries.eval.TSEvaluation

        }

        // copy the current state of things
        Instances inst = new Instances(m_instances);

        TSEvaluation eval = new TSEvaluation(inst,
            m_advancedConfigPanel.getHoldoutSetSize());               
       
        if (m_configAndBuild) {
          // configure the WekaForecaster with the base
          // learner
          m_threadForecaster.setBaseForecaster(m_advancedConfigPanel.getBaseClassifier());

          m_simpleConfigPanel.applyToForecaster(m_threadForecaster);
          m_advancedConfigPanel.applyToForecaster(m_threadForecaster);
        }
       
        m_simpleConfigPanel.applyToEvaluation(eval, m_threadForecaster);
        m_advancedConfigPanel.applyToEvaluation(eval, m_threadForecaster);

        eval.setForecastFuture(m_advancedConfigPanel.getOutputFuturePredictions() ||
            m_advancedConfigPanel.getGraphFuturePredictions());
       
        if (m_threadForecaster instanceof OverlayForecaster &&
            ((OverlayForecaster)m_threadForecaster).isUsingOverlayData()) {
          if (!eval.getEvaluateOnTestData() &&
              (m_advancedConfigPanel.m_outputFutureCheckBox.isSelected() ||
                  m_advancedConfigPanel.m_graphFutureCheckBox.isSelected())) {

            // warn the user that future forecast can't be produced for the training data
            dontShowMessageDialog("weka.classifiers.timeseries.gui.CantFutureForecastTraining",
                "Unable to generate a future forecast beyond the end of the training\n" +
                "data because there is no future overlay data available. Use a holdout\n" +
                "set for evaluation in order to simulate having \"future\" overlay\n" +
                "data available.\n\n",
            "ForecastingPanel");
          }
         
          if (eval.getEvaluateOnTestData() &&
              (m_advancedConfigPanel.m_outputFutureCheckBox.isSelected() ||
                  m_advancedConfigPanel.m_graphFutureCheckBox.isSelected())) {
           
            // warn the user that future forecast can't be produced for the test data
            dontShowMessageDialog("weka.classifiers.timeseries.gui.CantFutureForecastTesting",
                "Unable to generate a future forecast beyond the end of the test\n" +
                "data because there is no future overlay data available.\n\n",
            "ForecastingPanel");
          }
        }               


        fname = m_threadForecaster.getAlgorithmName();
       
        if (m_name == null) {
          String algoName = fname.substring(0, fname.indexOf(' '));
          if (algoName.startsWith("weka.classifiers.")) {
            name += algoName.substring("weka.classifiers.".length());
          } else {
            name += algoName;
          }
        }       
       
        String lagOptions = "";
        if (m_threadForecaster instanceof TSLagUser) {
          TSLagMaker lagMaker = ((TSLagUser)m_threadForecaster).getTSLagMaker();
          lagOptions = Utils.joinOptions(lagMaker.getOptions());
        }
       
        if (lagOptions.length() > 0 && m_name == null) {
          name += " [" + lagOptions + "]";
        }
       
        if (m_name == null) {
          outBuff.append("=== Run information ===\n\n");
        } else {
          outBuff = m_history.getNamedBuffer(name);
          outBuff.append("\n=== Model re-evaluation===\n\n");
        }
       
        outBuff.append("Scheme:\n\t" + fname).append("\n\n");
       
        if (lagOptions.length() > 0) {
          outBuff.append("Lagged and derived variable options:\n\t").
          append(lagOptions + "\n\n");
        }

        outBuff.append("Relation:     " + inst.relationName() + '\n');
        outBuff.append("Instances:    " + inst.numInstances() + '\n');
        outBuff.append("Attributes:   " + inst.numAttributes() + '\n');
        if (inst.numAttributes() < 100) {
          for (int i = 0; i < inst.numAttributes(); i++) {
            outBuff.append("              " + inst.attribute(i).name()
                + '\n');
          }
        } else {
          outBuff.append("              [list of attributes omitted]\n");
        }
       
        if (m_configAndBuild) {
          m_history.addResult(name, outBuff);
        }
        m_history.setSingle(name);

        if (m_log != null) {
          m_log.logMessage("Started " + fname);
          if (m_configAndBuild) {
            logger.println("Training forecaster...");
          }
          if (m_log instanceof TaskLogger) {
            ((TaskLogger)m_log).taskStarted();
          }
        }

        Instances trainInst = eval.getTrainingData();
        if (m_configAndBuild) {
          m_threadForecaster.buildForecaster(trainInst, logger);
          outBuff.append("\n" + m_threadForecaster.toString());
          m_history.updateResult(name);
        }

        if (eval.getEvaluateOnTrainingData() ||
            eval.getEvaluateOnTestData()) {
          logger.println("Evaluating...");
        }

        // evaluate the forecaster
        eval.evaluateForecaster(m_threadForecaster, false, logger);

        // output any predictions
        if (m_advancedConfigPanel.getOutputPredictionsAtStep() > 0) {
          int step = m_advancedConfigPanel.getOutputPredictionsAtStep();
          String targetName = m_advancedConfigPanel.getOutputPredictionsTarget();
          String fieldsToForecast = m_threadForecaster.getFieldsToForecast();
          if (!fieldsToForecast.contains(targetName)) {
            throw new Exception("Cannot output predictions for \""
                + targetName + "\" because that field is not being predicted.");
          }
          if (eval.getTrainingData() != null &&
              eval.getEvaluateOnTrainingData()) {
            String predString = eval.printPredictionsForTrainingData("=== Predictions " +
                "for training data: " + targetName + " ("
                + step + (step > 1 ? "-steps ahead)" : "-step ahead)") + " ===",
                targetName, step, eval.getPrimeWindowSize());
            outBuff.append("\n").append(predString);
          }             

          if (eval.getTestData() != null) {
            int instanceNumOffset =
              (eval.getTrainingData() != null &&
                  m_advancedConfigPanel.getHoldoutSetSize() > 0)
                  ? eval.getTrainingData().numInstances()
                      : 0;

                  String predString = eval.printPredictionsForTestData("=== Predictions " +
                      "for test data: " + targetName + " ("
                      + step + (step > 1 ? "-steps ahead)" : "-step ahead)") + " ===",
                      targetName, step, instanceNumOffset);
                  outBuff.append("\n").append(predString);
          }
          m_history.updateResult(name);
        }

        // output any future predictions
        if (m_advancedConfigPanel.getOutputFuturePredictions()) {
          if (eval.getTrainingData() != null /*&&
                eval.getEvaluateOnTrainingData()*/) {
            outBuff.append("\n=== Future predictions from end of training data ===\n");
            outBuff.append(eval.printFutureTrainingForecast(m_threadForecaster));
          }

          if (eval.getTestData() != null &&
              eval.getEvaluateOnTestData()) {
            outBuff.append("\n=== Future predictions from end of test data ===\n");
            outBuff.append(eval.printFutureTestForecast(m_threadForecaster));
          }
          m_history.updateResult(name);
        }

        // evaluation summary
        if (eval.getEvaluateOnTrainingData() || eval.getEvaluateOnTestData()) {
          outBuff.append("\n" + eval.toSummaryString());
          m_history.updateResult(name);
        }

        // result object list
        List<Object> resultList = (m_configAndBuild)
        ? new ArrayList<Object>()
            : (List<Object>)m_history.getNamedObject(name);
       
        if (!m_configAndBuild) {
          // go through and remove any JPanels
          List<Object> newResultList = new ArrayList<Object>();
          for (int z = 0; z < resultList.size(); z++) {
            if (resultList.get(z) instanceof TSForecaster ||
                resultList.get(z) instanceof Instances) {
              newResultList.add(resultList.get(z));
            }
          }
          resultList = newResultList;
        }

        // handle graphs
        List<JPanel> graphList = new ArrayList<JPanel>();
        // graph predictions for targets at specific step
        if (m_advancedConfigPanel.getGraphPredictionsAtStep() > 0) {
          int stepNum = m_advancedConfigPanel.getGraphPredictionsAtStep();
          List<String> targets =
            AbstractForecaster.stringToList(m_threadForecaster.getFieldsToForecast());
          if (eval.getTrainingData() != null && eval.getEvaluateOnTrainingData()) {               
            JPanel trainTargetsAtStep =
              eval.graphPredictionsForTargetsOnTraining(GraphDriver.getDefaultDriver(),
                  m_threadForecaster, targets, stepNum, eval.getPrimeWindowSize());
            trainTargetsAtStep.setToolTipText("Train pred. for targets");

            graphList.add(trainTargetsAtStep);
          }

          if (eval.getTestData() != null && eval.getEvaluateOnTestData()) {
            int instanceOffset = (eval.getPrimeForTestDataWithTestData())
            ? eval.getPrimeWindowSize()
                : 0;
            JPanel testTargetsAtStep =
              eval.graphPredictionsForTargetsOnTesting(GraphDriver.getDefaultDriver(),
                  m_threadForecaster, targets, stepNum, instanceOffset);
            testTargetsAtStep.setToolTipText("Test pred. for targets");

            graphList.add(testTargetsAtStep);
          }
        }

        // graph predictions for specific target at selected steps
        if (m_advancedConfigPanel.getGraphTargetForSteps()) {
          String fieldsToForecast = m_threadForecaster.getFieldsToForecast();
          String selectedTarget =
            m_advancedConfigPanel.getGraphTargetForStepsTarget();

          if (!fieldsToForecast.contains(selectedTarget)) {
            throw new Exception("Cannot graph predictions for \""
                + selectedTarget + "\" because that field is not being predicted.");
          }
          List<Integer> stepList =
            m_advancedConfigPanel.getGraphTargetForStepsStepList();

          if (eval.getTrainingData() != null && eval.getEvaluateOnTrainingData()) {
            JPanel trainStepsForTarget =
              eval.graphPredictionsForStepsOnTraining(GraphDriver.getDefaultDriver(),
                  m_threadForecaster, selectedTarget, stepList, eval.getPrimeWindowSize());
            trainStepsForTarget.setToolTipText("Train pred. at steps");

            graphList.add(trainStepsForTarget);
          }

          if (eval.getTestData() != null && eval.getEvaluateOnTestData()) {
            int instanceOffset = (eval.getPrimeForTestDataWithTestData())
            ? eval.getPrimeWindowSize()
                : 0;
            JPanel testStepsForTarget =
              eval.graphPredictionsForStepsOnTesting(GraphDriver.getDefaultDriver(),
                  m_threadForecaster, selectedTarget, stepList, instanceOffset);
            testStepsForTarget.setToolTipText("Test pred. at steps");

            graphList.add(testStepsForTarget);
          }
        }

        // graph future predictions
        if (m_advancedConfigPanel.getGraphFuturePredictions()) {
          if (eval.getTrainingData() != null /*&& eval.getEvaluateOnTrainingData()*/) {
            try {
              JPanel trainFuture = eval.
              graphFutureForecastOnTraining(GraphDriver.getDefaultDriver(),
                  m_threadForecaster, AbstractForecaster.
                  stringToList(m_threadForecaster.getFieldsToForecast()));
              trainFuture.setToolTipText("Train future pred.");

              graphList.add(trainFuture);
            } catch (Exception ex) {
              if (m_threadForecaster instanceof OverlayForecaster &&
                  ((OverlayForecaster)m_threadForecaster).isUsingOverlayData()) {
                if (m_log != null) {
                  m_log.logMessage("Unable to graph future forecast for training " +
                      "data because no future overlay data is available");
                }
              } else {
                if (m_log != null) {
                  m_log.logMessage("Unable to graph future forecast for " +
                      "training data: " + ex.getMessage());
                }
              }
            }
          }

          if (eval.getTestData() != null && eval.getEvaluateOnTestData()) {
            try {
              JPanel testFuture = eval.
              graphFutureForecastOnTesting(GraphDriver.getDefaultDriver(),
                  m_threadForecaster, AbstractForecaster.
                  stringToList(m_threadForecaster.getFieldsToForecast()));
              testFuture.setToolTipText("Test future pred.");

View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.