Package statechum.model.testset

Examples of statechum.model.testset.PTA_computePrecisionRecall$PosNegPrecisionRecallNum


      };
      QuestionAndRestartCounter l = new QuestionAndRestartCounter(learner);
      sPlus = rpg.getExtraSequences(percent/10-1);sMinus = rpg.getAllSequences(percent/10-1);

      LearnerGraph learnt = learn(l,sMinus);
      PTA_computePrecisionRecall precRec = new PTA_computePrecisionRecall(learnt);
      PTASequenceEngine engine = new PTA_FSMStructure(graph,null);
      precRec.crossWith(sMinus);PosNegPrecisionRecall ptaPR = precRec.getPosNegPrecisionRecallNum();
      SequenceSet ptaTestSet = engine.new SequenceSet();ptaTestSet.setIdentity();
      ptaTestSet = ptaTestSet.cross(graph.wmethod.getFullTestSet(1));
      precRec.crossWith(engine);PosNegPrecisionRecall prNeg = precRec.getPosNegPrecisionRecallNum();
     
      assert questionNumber.get() == l.getQuestionCounter();
     
      // Column 0 is the name of the learner.
      // Columns 3 and 4
View Full Code Here


    /*
    List<List<String>> data = generator.getExtraSequences(0).getData();
    for(List<String> str:data)
      System.out.println(str);
    */
    PTA_computePrecisionRecall precRec = null;
   
    {
      precRec = new PTA_computePrecisionRecall(markovD);
      precRec.crossWith(generator.getAllSequences(0));PosNegPrecisionRecall result = precRec.getPosNegPrecisionRecallNum();
      System.out.println("Markov: precision "+result.getPosprecision()+" recall: "+result.getPosrecall());
    }

    {
      precRec = new PTA_computePrecisionRecall(edsm);
      precRec.crossWith(generator.getAllSequences(0));PosNegPrecisionRecall result = precRec.getPosNegPrecisionRecallNum();
      System.out.println("EDSM: precision "+result.getPosprecision()+" recall: "+result.getPosrecall());
    }
   
    //Visualiser.updateFrame(edsm, null);
    //Visualiser.waitForKey();
View Full Code Here

    SequenceSet partialPTA = engine.new SequenceSet();partialPTA.setIdentity();
    partialPTA = partialPTA.cross(TestFSMAlgo.buildSet(new String[][] {
        new String[] {"a","a","a"}, // +
        new String[]{"b"}      // -
      },mainConfiguration,converter));
    PTA_computePrecisionRecall precComputer = new PTA_computePrecisionRecall(fsm);
    precComputer.crossWith(engine);
    assertEquals("true negatives",1, precComputer.resultTN);assertEquals("true positives",1, precComputer.resultTP);
    assertEquals("false negatives",0, precComputer.resultFN);assertEquals("false positives",0, precComputer.resultFP);
    assertEquals("positives relevant",1, precComputer.pos_Rel);assertEquals("negatives relevant",1, precComputer.neg_Rel);
    assertEquals("positives retrieved",1, precComputer.pos_Ret);assertEquals("negatives retrieved",1, precComputer.neg_Ret);
  }
View Full Code Here

    partialPTA = partialPTA.cross(TestFSMAlgo.buildSet(new String[][] {
        new String[] {"a","a","a"},// +
        new String[]{"b"},      // -
        new String[]{"a", "b"// -, FP
      },mainConfiguration,converter));
    PTA_computePrecisionRecall precComputer = new PTA_computePrecisionRecall(fsm);
    precComputer.crossWith(engine);
    assertEquals("true negatives",1, precComputer.resultTN);assertEquals("true positives",1, precComputer.resultTP);
    assertEquals("false negatives",0, precComputer.resultFN);assertEquals("false positives",1, precComputer.resultFP);
    assertEquals("positives relevant",1, precComputer.pos_Rel);assertEquals("negatives relevant",2, precComputer.neg_Rel);
    assertEquals("positives retrieved",2, precComputer.pos_Ret);assertEquals("negatives retrieved",1, precComputer.neg_Ret);
  }
View Full Code Here

        new String[] {"a","a","a"}, // +
        new String[]{"b"}, // -
        new String[]{"a", "b"} // -, FP
      },mainConfiguration,converter));
    fsm = buildLearnerGraph("Q-a->Q / A-a->B-a->A-b-#C\nB-b->D-c->E\nD-a-#F", "testPrecisionRecall2b",mainConfiguration,converter);
    PTA_computePrecisionRecall precComputer = new PTA_computePrecisionRecall(fsm,fsm.findVertex(VertexID.parseID("A")));
    precComputer.crossWith(engine);
    assertEquals("true negatives",1, precComputer.resultTN);assertEquals("true positives",1, precComputer.resultTP);
    assertEquals("false negatives",0, precComputer.resultFN);assertEquals("false positives",1, precComputer.resultFP);
    assertEquals("positives relevant",1, precComputer.pos_Rel);assertEquals("negatives relevant",2, precComputer.neg_Rel);
    assertEquals("positives retrieved",2, precComputer.pos_Ret);assertEquals("negatives retrieved",1, precComputer.neg_Ret);
  }
View Full Code Here

    partialPTA = partialPTA.cross(TestFSMAlgo.buildSet(new String[][] {
        new String[] {"a","a","a","a","b"}, // -
        new String[]{"b"}, // -
        new String[]{"a", "b"} //, FP
      },mainConfiguration,converter));
    PTA_computePrecisionRecall precComputer = new PTA_computePrecisionRecall(fsm);
    precComputer.crossWith(engine);
    assertEquals("true negatives",2, precComputer.resultTN);assertEquals("true positives",0, precComputer.resultTP);
    assertEquals("false negatives",0, precComputer.resultFN);assertEquals("false positives",1, precComputer.resultFP);
    assertEquals("positives relevant",0, precComputer.pos_Rel);assertEquals("negatives relevant",3, precComputer.neg_Rel);
    assertEquals("positives retrieved",1, precComputer.pos_Ret);assertEquals("negatives retrieved",2, precComputer.neg_Ret);
  }
View Full Code Here

        new String[] {"a","a","a","a","b"}, // -
        new String[]{"b"}, // -
        new String[]{"a", "b", "c"}, // -, FP
        new String[]{"a", "b", "a"} // +, FN
      },mainConfiguration,converter));
    PTA_computePrecisionRecall precComputer = new PTA_computePrecisionRecall(fsm);
    precComputer.crossWith(engine);
    assertEquals("true negatives",2, precComputer.resultTN);assertEquals("true positives",0, precComputer.resultTP);
    assertEquals("false negatives",1, precComputer.resultFN);assertEquals("false positives",1, precComputer.resultFP);
    assertEquals("positives relevant",1, precComputer.pos_Rel);assertEquals("negatives relevant",3, precComputer.neg_Rel);
    assertEquals("positives retrieved",1, precComputer.pos_Ret);assertEquals("negatives retrieved",3, precComputer.neg_Ret);
  }
View Full Code Here

    PTASequenceEngine engine = new PTA_FSMStructure(mach,null);
    SequenceSet partialPTA = engine.new SequenceSet();partialPTA.setIdentity();
    partialPTA = partialPTA.cross(TestFSMAlgo.buildSet(new String[][] {
        new String[] {"a","a","a","b","a"}, // +, FN
      },mainConfiguration,converter));
    PTA_computePrecisionRecall precComputer = new PTA_computePrecisionRecall(fsm);
    precComputer.crossWith(engine);
    assertEquals("true negatives",0, precComputer.resultTN);assertEquals("true positives",0, precComputer.resultTP);
    assertEquals("false negatives",1, precComputer.resultFN);assertEquals("false positives",0, precComputer.resultFP);
    assertEquals("positives relevant",1, precComputer.pos_Rel);assertEquals("negatives relevant",0, precComputer.neg_Rel);
    assertEquals("positives retrieved",0, precComputer.pos_Ret);assertEquals("negatives retrieved",1, precComputer.neg_Ret);
  }
View Full Code Here

    PTASequenceEngine engine = new PTA_FSMStructure(mach,null);
    SequenceSet partialPTA = engine.new SequenceSet();partialPTA.setIdentity();
    partialPTA = partialPTA.cross(TestFSMAlgo.buildSet(new String[][] {
        new String[] {"a","a","a","a","b"}, // +, FN
      },mainConfiguration,converter));
    PTA_computePrecisionRecall precComputer = new PTA_computePrecisionRecall(fsm);
    precComputer.crossWith(engine);
    assertEquals("true negatives",0, precComputer.resultTN);assertEquals("true positives",0, precComputer.resultTP);
    assertEquals("false negatives",1, precComputer.resultFN);assertEquals("false positives",0, precComputer.resultFP);
    assertEquals("positives relevant",1, precComputer.pos_Rel);assertEquals("negatives relevant",0, precComputer.neg_Rel);
    assertEquals("positives retrieved",0, precComputer.pos_Ret);assertEquals("negatives retrieved",1, precComputer.neg_Ret);
  }
View Full Code Here

    PTASequenceEngine engine = new PTA_FSMStructure(mach,null);
    SequenceSet partialPTA = engine.new SequenceSet();partialPTA.setIdentity();
    partialPTA = partialPTA.cross(TestFSMAlgo.buildSet(new String[][] {
        new String[] {"a","a","a","b","a","c"}, // +, FN
      },mainConfiguration,converter));
    PTA_computePrecisionRecall precComputer = new PTA_computePrecisionRecall(fsm);
    precComputer.crossWith(engine);
    assertEquals("true negatives",0, precComputer.resultTN);assertEquals("true positives",0, precComputer.resultTP);
    assertEquals("false negatives",1, precComputer.resultFN);assertEquals("false positives",0, precComputer.resultFP);
    assertEquals("positives relevant",1, precComputer.pos_Rel);assertEquals("negatives relevant",0, precComputer.neg_Rel);
    assertEquals("positives retrieved",0, precComputer.pos_Ret);assertEquals("negatives retrieved",1, precComputer.neg_Ret);
  }
View Full Code Here

TOP

Related Classes of statechum.model.testset.PTA_computePrecisionRecall$PosNegPrecisionRecallNum

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.