Package statechum.analysis.learning.rpnicore

Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator$PercentLabelledPTA


      final Collection<List<Label>> testSet = PaperUAS.computeEvaluationSet(referenceGraph,states*3,makeEven(states*tracesAlphabet));

      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        final int tracesToGenerate = makeEven(traceQuantity);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (int)(traceLengthMultiplier*states*tracesAlphabet);
            }
   
            @Override
            public int getPrefixLength(int len) {
              return len;
            }
          });


        if (onlyUsePositives)
        {
          pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
            @Override
            public boolean shouldBeReturned(Object name) {
              return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
            }
          }));
        }
        else
          pta.paths.augmentPTA(generator.getAllSequences(0));
   
        final MarkovModel m= new MarkovModel(chunkLen,true,true);

        new MarkovClassifier(m, pta).updateMarkov(false);// construct Markov chain if asked for.
       
View Full Code Here


      outcome.setValue(DOUBLE_V.ACCURACY_W, wSeq.firstElem);
    }
   
    {
      Collection<List<Label>> sequences =new LinkedHashSet<List<Label>>();
      RandomPathGenerator rpg = new RandomPathGenerator(from, new Random(0),4, from.getInit());// the seed for Random should be the same for each file
      long startTime = System.nanoTime();
      rpg.generatePosNeg((graphComplexity+1)*states , 1);
      outcome.setValue(LONG_V.DURATION_RAND,System.nanoTime()-startTime);
      sequences.addAll(rpg.getAllSequences(0).getData(PTASequenceEngine.truePred));
      sequences.addAll(rpg.getExtraSequences(0).getData(PTASequenceEngine.truePred));
      Pair<Double,Long> randSeq = compareLang(from, to, sequences);
      outcome.setValue(LONG_V.DURATION_RAND, outcome.getValue(LONG_V.DURATION_RAND)+randSeq.secondElem);
      outcome.setValue(DOUBLE_V.ACCURACY_RAND, randSeq.firstElem);
    }
   
View Full Code Here

      final Collection<List<Label>> testSet = PaperUAS.computeEvaluationSet(referenceGraph,states*3,makeEven(states*tracesAlphabet));

      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        final int tracesToGenerate = makeEven(traceQuantity);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (int)(traceLengthMultiplier*states*tracesAlphabet);
            }
   
            @Override
            public int getPrefixLength(int len) {
              return len;
            }
          });

        if (onlyUsePositives)
        {
          pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
            @Override
            public boolean shouldBeReturned(Object name) {
              return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
            }
          }));
        }
        else
          pta.paths.augmentPTA(generator.getAllSequences(0));
   
        List<List<Label>> sPlus = generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
        List<List<Label>> sMinus= generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return !((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
View Full Code Here

      final Collection<List<Label>> testSet = PaperUAS.computeEvaluationSet(referenceGraph,states*3,makeEven(states*alphabet));

      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        final int tracesToGenerate = makeEven(traceQuantity);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (int)(traceLengthMultiplier*states*alphabet);
            }
   
            @Override
            public int getPrefixLength(int len) {
              return len;
            }
          });

        if (onlyUsePositives)
        {
          pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
            @Override
            public boolean shouldBeReturned(Object name) {
              return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
            }
          }));
        }
        else
          pta.paths.augmentPTA(generator.getAllSequences(0));

        final MarkovModel m= new MarkovModel(chunkLen,true,true);
        new MarkovClassifier(m, pta).updateMarkov(false);
        pta.clearColours();

View Full Code Here

      final Collection<List<Label>> testSet = PaperUAS.computeEvaluationSet(referenceGraph,states*3,makeEven(states*tracesAlphabet));

      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        final int tracesToGenerate = makeEven(traceQuantity);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (int)(traceLengthMultiplier*states*tracesAlphabet);
            }
   
            @Override
            public int getPrefixLength(int len) {
              return len;
            }
          });

        if (onlyUsePositives)
        {
          pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
            @Override
            public boolean shouldBeReturned(Object name) {
              return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
            }
          }));
        }
        else
          pta.paths.augmentPTA(generator.getAllSequences(0));
   
        List<List<Label>> sPlus = generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
        List<List<Label>> sMinus= generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return !((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
View Full Code Here

      final Collection<List<Label>> testSet = PaperUAS.computeEvaluationSet(referenceGraph,states*3,makeEven(states*alphabet));

      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        final int tracesToGenerate = makeEven(traceQuantity);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (int)(traceLengthMultiplier*states*alphabet);
            }
   
            @Override
            public int getPrefixLength(int len) {
              return len;
            }
          });

        if (onlyUsePositives)
        {
          pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
            @Override
            public boolean shouldBeReturned(Object name) {
              return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
            }
          }));
        }
        else
          pta.paths.augmentPTA(generator.getAllSequences(0));

        final MarkovModel m= new MarkovModel(chunkLen,true,true,false);
        new MarkovClassifier(m, pta).updateMarkov(false);
        pta.clearColours();

View Full Code Here

    final Collection<List<Label>> testSet = PaperUAS.computeEvaluationSet(referenceGraph,states*3,states*alphabet);
   
    for(int attempt=0;attempt<3;++attempt)
    {// try learning the same machine a few times
      LearnerGraph pta = new LearnerGraph(config);
      RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,referenceGraph.getVertex(Arrays.asList(new Label[]{uniqueFromInitial})));
      generator.setWalksShouldLeadToInitialState();
      // test sequences will be distributed around
      final int pathLength = generator.getPathLength();
      final int sequencesPerChunk = PairQualityLearner.makeEven(alphabet*states*traceQuantity);// we are only using one chunk here but the name is unchanged.
      // Usually, the total number of elements in test sequences (alphabet*states*traceQuantity) will be distributed around (random(pathLength)+1). The total size of PTA is a product of these two.
      // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
      // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
      final int tracesToGenerate = 20;//PairQualityLearner.makeEven(states*traceQuantity*3);
      final Random rnd = new Random(seed*31+attempt);
     
      generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                 
          @Override
          public int getLength() {
            return  6;//10*(rnd.nextInt(pathLength)+1)*sequencesPerChunk/tracesToGenerate;
          }
 
          @Override
          public int getPrefixLength(int len) {
            return len;
          }
        },true,true,null,Arrays.asList(new Label[]{uniqueFromInitial}));
     
      //System.out.println(generator.getAllSequences(0).getData(PTASequenceEngine.truePred));
     
      /*
      for(List<Label> seq:referenceGraph.wmethod.computeNewTestSet(1))
      {
        pta.paths.augmentPTA(seq, referenceGraph.getVertex(seq) != null, false, null);
      }*/
      //pta.paths.augmentPTA(referenceGraph.wmethod.computeNewTestSet(referenceGraph.getInit(),1));// this one will not set any states as rejects because it uses shouldbereturned
      //referenceGraph.pathroutines.completeGraph(referenceGraph.nextID(false));
      if (onlyUsePositives)
        pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        }));
      else
        pta.paths.augmentPTA(generator.getAllSequences(0));// the PTA will have very few reject-states because we are generating few sequences and hence there will be few negative sequences.
        // In order to approximate the behaviour of our case study, we need to compute which pairs are not allowed from a reference graph and use those as if-then automata to start the inference.
       
      /*
      synchronized (AbstractLearnerGraph.syncObj) {
        PaperUAS.computePTASize(selectionID+" with unique "+uniqueFromInitial+" : ", pta, referenceGraph);
View Full Code Here

              int extraLength=0;
              if (deterministicGraph.getStateNumber() == 1) extraLength=1;//where the diameter is zero (and due
              // to subset construction, we are not going to get unreachable states thus getStateNumber()
              // is the right way to determine this), we have to set extra length to 1 to ensure walks are generated.

              RandomPathGenerator randomPaths = new RandomPathGenerator(deterministicGraph,randomGenerator.getRandom(entryA.getKey()),
                  extraLength+config.getGdScoreComputationAlgorithm_RandomWalk_ExtraLength(),state,matrixForward.pathroutines.computeAlphabet());
              if (config.getGdScoreComputationAlgorithm_RandomWalk_PathLength() > 0)
                randomPaths.setPathLength(config.getGdScoreComputationAlgorithm_RandomWalk_PathLength());
              randomPaths.generateRandomPosNeg(config.getGdScoreComputationAlgorithm_RandomWalk_NumberOfSequences(), 1,false);
              graphwalk=new GraphAndWalk(deterministicGraph,randomPaths.getAllSequences(0));
            }
            break;
          case SCORE_TESTSET:
            graphwalk=new GraphAndWalk(deterministicGraph,deterministicGraph.wmethod.computeNewTestSet(state, config.getGdScoreComputationAlgorithm_TestSet_ExtraStates()));
            deterministicGraph.learnerCache.invalidate();// reduce memory footprint.
View Full Code Here

   {
     for(CmpVertex vert:referenceGraph.transitionMatrix.keySet())
       if (!vert.isAccept())
         throw new IllegalArgumentException("test set generation should not be attempted on an automaton with reject-states");
     assert numberOfSeq > 0 && seqLength > 0;
    RandomPathGenerator pathGen = new RandomPathGenerator(referenceGraph,new Random(0),seqLength,referenceGraph.getInit());
    pathGen.generateRandomPosNeg(numberOfSeq, 1, false, null, true,true,null,null);
    return  pathGen.getAllSequences(0).getData(PTASequenceEngine.truePred);
     /*
    Collection<List<Label>> evaluationTestSet = referenceGraph.wmethod.getFullTestSet(1);
   
    RandomPathGenerator pathGen = new RandomPathGenerator(referenceGraph,new Random(0),5,referenceGraph.getInit());
    int wPos=0;
View Full Code Here

      final Collection<List<Label>> testSet = PaperUAS.computeEvaluationSet(referenceGraph,states*3,makeEven(states*tracesAlphabet));

      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        final int tracesToGenerate = makeEven(traceQuantity);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (int)(traceLengthMultiplier*states*tracesAlphabet);
            }
   
            @Override
            public int getPrefixLength(int len) {
              return len;
            }
          });


        if (onlyUsePositives)
        {
          pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
            @Override
            public boolean shouldBeReturned(Object name) {
              return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
            }
          }));
        }
        else
          pta.paths.augmentPTA(generator.getAllSequences(0));
   
        final MarkovModel m= new MarkovModel(chunkLen,true,true,false);

        new MarkovClassifier(m, pta).updateMarkov(false);// construct Markov chain if asked for.
       
View Full Code Here

TOP

Related Classes of statechum.analysis.learning.rpnicore.RandomPathGenerator$PercentLabelledPTA

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.