Package statechum.analysis.learning.rpnicore

Examples of statechum.analysis.learning.rpnicore.LearnerGraph$ScoreComputationCallback


  /** Only matches for any path. */
  @Test
  public final void testKtails12()
  {
    testConfig.setKlimit(2);
    LearnerGraph fsm = FsmParser.buildLearnerGraph("A-a->B-b->C-a->D-d->E / B-c->F-a->G-e->H / M-b->N-a->Q / M-c->P-a-#S", "testKtails12",testConfig,getLabelConverter());
    Assert.assertEquals(-1,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("M"),fsm.findVertex("B")), true));
    Assert.assertEquals(-1,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("M"),fsm.findVertex("B")), false));
    Assert.assertEquals(-1,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("B"),fsm.findVertex("M")), true));
    Assert.assertEquals(-1,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("B"),fsm.findVertex("M")), false));
  }
View Full Code Here


  }
 
  @Test
  public final void testSiccoScoring0()
  {
    LearnerGraph fsm = FsmParser.buildLearnerGraph("A-a->B-a->B-c->B / A-b->C-a->D-a->E-c-#F", "testSiccoScoring0",testConfig,getLabelConverter());
    for(CmpVertex v:fsm.transitionMatrix.keySet()) v.setColour(JUConstants.RED);
    Assert.assertEquals(-1,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), true));
    Assert.assertEquals(-1,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), false));
  }
View Full Code Here

  }

  @Test
  public final void testSiccoScoring1()
  {
    LearnerGraph fsm = FsmParser.buildLearnerGraph("A-a->B-a->B-c->B / A-b->C-a->D-a->E", "testSiccoScoring1",testConfig,getLabelConverter());
    for(CmpVertex v:fsm.transitionMatrix.keySet()) v.setColour(JUConstants.RED);
    Assert.assertEquals(0,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), true));
    Assert.assertEquals(0,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), false));
  }
View Full Code Here

  }
 
  @Test
  public final void testSiccoScoring2()
  {
    LearnerGraph fsm = FsmParser.buildLearnerGraph("A-a->B-a->B-c->B / A-b->C-a->D-a->E-c->F / E-a->G / C-b->H", "testSiccoScoring2",testConfig,getLabelConverter());
    for(CmpVertex v:fsm.transitionMatrix.keySet()) v.setColour(JUConstants.RED);
    Assert.assertEquals(0,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), true));
    Assert.assertEquals(0,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), false));
  }
View Full Code Here

  }
 
  @Test
  public final void testSiccoScoring3a()
  {
    LearnerGraph fsm = FsmParser.buildLearnerGraph("A-a->B-a->B-c->B / A-b->C-a->D-a->E-c->F / E-a->G / C-b->H / G-b->I", "testSiccoScoring3",testConfig,getLabelConverter());
    for(CmpVertex v:fsm.transitionMatrix.keySet()) v.setColour(JUConstants.RED);
    Assert.assertEquals(-1,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), true));
    Assert.assertEquals(0,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), false));
  }
View Full Code Here

      if (tracesAlphabetMultiplier <= 0)
        tracesAlphabetMultiplier = alphabetMultiplier;
      final int alphabet = (int)(alphabetMultiplier*states);
      final int tracesAlphabet = (int)(tracesAlphabetMultiplier*states);
     
      LearnerGraph referenceGraph = null;
      ThreadResult outcome = new ThreadResult();
      MachineGenerator mg = new MachineGenerator(states, 400 , (int)Math.round((double)states/5));mg.setGenerateConnected(true);
      referenceGraph = mg.nextMachine(alphabet,seed, config, converter).pathroutines.buildDeterministicGraph();// reference graph has no reject-states, because we assume that undefined transitions lead to reject states.
     
      LearnerEvaluationConfiguration learnerEval = new LearnerEvaluationConfiguration(config);learnerEval.setLabelConverter(converter);
      final Collection<List<Label>> testSet = PaperUAS.computeEvaluationSet(referenceGraph,states*3,makeEven(states*tracesAlphabet));

      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        final int tracesToGenerate = makeEven(traceQuantity);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (int)(traceLengthMultiplier*states*tracesAlphabet);
            }
   
            @Override
            public int getPrefixLength(int len) {
              return len;
            }
          });

        if (onlyUsePositives)
        {
          pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
            @Override
            public boolean shouldBeReturned(Object name) {
              return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
            }
          }));
        }
        else
          pta.paths.augmentPTA(generator.getAllSequences(0));
   
        List<List<Label>> sPlus = generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
        List<List<Label>> sMinus= generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return !((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
        assert sPlus.size() > 0;
        assert sMinus.size() > 0;
        final MarkovModel m= new MarkovModel(chunkLen,true,true);
        m.createMarkovLearner(sPlus, sMinus,false);
       
        pta.clearColours();

        if (!onlyUsePositives)
          assert pta.getStateNumber() > pta.getAcceptStateNumber() : "graph with only accept states but onlyUsePositives is not set";
        else
          assert pta.getStateNumber() == pta.getAcceptStateNumber() : "graph with negatives but onlyUsePositives is set";
       
        LearnerMarkovPassive learnerOfPairs = null;
        LearnerGraph actualAutomaton = null;
       
        final Configuration deepCopy = pta.config.copy();deepCopy.setLearnerCloneGraph(true);
        LearnerGraph ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);

        LearnerGraph trimmedReference = MarkovPassivePairSelection.trimUncoveredTransitions(pta,referenceGraph);
       
        final ConsistencyChecker checker = new MarkovClassifier.DifferentPredictionsInconsistencyNoBlacklisting();
        long inconsistencyForTheReferenceGraph = MarkovClassifier.computeInconsistency(referenceGraph, m, checker,false);
       
        learnerOfPairs = new LearnerMarkovPassive(learnerEval,referenceGraph,pta);learnerOfPairs.setMarkovModel(m);

        learnerOfPairs.setScoreComputationOverride(new statechum.analysis.learning.rpnicore.PairScoreComputation.RedNodeSelectionProcedure() {
         
          @SuppressWarnings("unused")
          @Override
          public CmpVertex selectRedNode(LearnerGraph gr,Collection<CmpVertex> reds, Collection<CmpVertex> tentativeRedNodes)
          {
            return tentativeRedNodes.iterator().next();
          }
         
          @SuppressWarnings("unused")
          @Override
          public CmpVertex resolvePotentialDeadEnd(LearnerGraph gr, Collection<CmpVertex> reds, List<PairScore> pairs)
          {
            return null;
          }
         
          LearnerGraph coregraph = null;
          LearnerGraph extendedGraph = null;
          MarkovClassifier cl=null;
         
          @Override
          public void initComputation(LearnerGraph graph)
          {
            coregraph = graph;

            cl = new MarkovClassifier(m, coregraph);
              extendedGraph = cl.constructMarkovTentative();
          }
         
          @Override
          public long overrideScoreComputation(PairScore p)
          {

            long pairScore = p.getScore();
           
            if (pairScore >= 0)
              pairScore = MarkovScoreComputation.computenewscore(p, extendedGraph);
           
            return pairScore;
          }

          /** This one returns a set of transitions in all directions. */
          @SuppressWarnings("unused")
          @Override
          public Collection<Entry<Label, CmpVertex>> getSurroundingTransitions(CmpVertex currentRed)
          {
            return null;
          }

        });
        actualAutomaton = learnerOfPairs.learnMachine(new LinkedList<List<Label>>(),new LinkedList<List<Label>>());
       
        SampleData dataSample = new SampleData(null,null);
        //dataSample.difference = new DifferenceToReferenceDiff(0, 0);
        //dataSample.differenceForReferenceLearner = new DifferenceToReferenceDiff(0, 0);
       
        VertID rejectVertexID = null;
        for(CmpVertex v:actualAutomaton.transitionMatrix.keySet())
          if (!v.isAccept())
          {
            assert rejectVertexID == null : "multiple reject vertices in learnt automaton, such as "+rejectVertexID+" and "+v;
            rejectVertexID = v;break;
          }
        if (rejectVertexID == null)
          rejectVertexID = actualAutomaton.nextID(false);
        actualAutomaton.pathroutines.completeGraphPossiblyUsingExistingVertex(rejectVertexID);// we need to complete the graph, otherwise we are not matching it with the original one that has been completed.
        dataSample.actualLearner = estimateDifference(referenceGraph,actualAutomaton,testSet);
        dataSample.actualLearner.inconsistency = MarkovClassifier.computeInconsistency(actualAutomaton, m, checker,false);
        dataSample.referenceLearner = zeroScore;
        LearnerGraph outcomeOfReferenceLearner = new LearnerGraph(config);
        try
        {
          outcomeOfReferenceLearner = //new ReferenceLearnerUsingSiccoScoring(learnerEval,ptaCopy,false).learnMachine(new LinkedList<List<Label>>(),new LinkedList<List<Label>>());
              new EDSMReferenceLearner(learnerEval,ptaCopy,2).learnMachine(new LinkedList<List<Label>>(),new LinkedList<List<Label>>());
          dataSample.referenceLearner = estimateDifference(referenceGraph, outcomeOfReferenceLearner,testSet);
          dataSample.referenceLearner.inconsistency = MarkovClassifier.computeInconsistency(outcomeOfReferenceLearner, m, checker,false);
        }
        catch(LearnerAbortedException ex)
        {// the exception is thrown because the learner failed to learn anything completely. Ignore it because the default score is zero assigned via zeroScore.
        }       
        dataSample.fractionOfStatesIdentifiedBySingletons=Math.round(100*MarkovClassifier.calculateFractionOfStatesIdentifiedBySingletons(referenceGraph));
        dataSample.stateNumber = referenceGraph.getStateNumber();
        dataSample.transitionsSampled = Math.round(100*trimmedReference.pathroutines.countEdges()/referenceGraph.pathroutines.countEdges());
        statechum.Pair<Double,Double> correctnessOfMarkov = new MarkovClassifier(m, referenceGraph).evaluateCorrectnessOfMarkov();
        dataSample.markovPrecision = Math.round(100*correctnessOfMarkov.firstElem);dataSample.markovRecall = Math.round(100*correctnessOfMarkov.secondElem);
        Collection<List<Label>> wset=WMethod.computeWSet_reducedw(referenceGraph);
        int wSeqLen=0;
        for(List<Label> seq:wset)
        {
          int len = seq.size();if (len > wSeqLen) wSeqLen=len;
        }
        System.out.println("actual: "+actualAutomaton.getStateNumber()+" from reference learner: "+outcomeOfReferenceLearner.getStateNumber()+
            " difference actual is "+dataSample.actualLearner.inconsistency+ " difference ref is "+dataSample.referenceLearner.inconsistency
            + " inconsistency learnt "+dataSample.actualLearner.inconsistency+" inconsistency reference: "+inconsistencyForTheReferenceGraph
            +" transitions per state: "+(double)referenceGraph.pathroutines.countEdges()/referenceGraph.getStateNumber()+
              " W seq max len "+wSeqLen+
              " Uniquely identifiable by W "+Math.round(100*MarkovClassifier.calculateFractionOfIdentifiedStates(referenceGraph, wset))+" %"
View Full Code Here

 
  // Same as above but states not red
  @Test
  public final void testSiccoScoring3b()
  {
    LearnerGraph fsm = FsmParser.buildLearnerGraph("A-a->B-a->B-c->B / A-b->C-a->D-a->E-c->F / E-a->G / C-b->H / G-b->I", "testSiccoScoring3",testConfig,getLabelConverter());
    Assert.assertEquals(0,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), true));
    Assert.assertEquals(0,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), false));
  }
View Full Code Here

  }

  @Test
  public final void testSiccoScoring4a()
  {
    LearnerGraph fsm = FsmParser.buildLearnerGraph("A-a->B-a->B-c->B / A-b->C-a->D-a->E-c->F / E-a->G / C-b->H / C-c->I", "testSiccoScoring3",testConfig,getLabelConverter());
    for(CmpVertex v:fsm.transitionMatrix.keySet()) v.setColour(JUConstants.RED);
    Assert.assertEquals(-1,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), true));
    Assert.assertEquals(-1,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), false));
  }
View Full Code Here

  // Same as above but states not red
  @Test
  public final void testSiccoScoring4b()
  {
    LearnerGraph fsm = FsmParser.buildLearnerGraph("A-a->B-a->B-c->B / A-b->C-a->D-a->E-c->F / E-a->G / C-b->H / C-c->I", "testSiccoScoring3",testConfig,getLabelConverter());
    Assert.assertEquals(0,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), true));
    Assert.assertEquals(0,fsm.pairscores.computeScoreSicco(new StatePair(fsm.findVertex("C"),fsm.findVertex("A")), false));
  }
View Full Code Here

   
    @Override
    public ThreadResult call() throws Exception
    {
      final int alphabet = (int)(alphabetMultiplier*states);
      LearnerGraph referenceGraph = null;
      ThreadResult outcome = new ThreadResult();
      MachineGenerator mg = new MachineGenerator(states, 400 , (int)Math.round((double)states/5));mg.setGenerateConnected(true);
      referenceGraph = mg.nextMachine(alphabet,seed, config, converter).pathroutines.buildDeterministicGraph();// reference graph has no reject-states, because we assume that undefined transitions lead to reject states.
     
      LearnerEvaluationConfiguration learnerEval = new LearnerEvaluationConfiguration(config);learnerEval.setLabelConverter(converter);
      final Collection<List<Label>> testSet = PaperUAS.computeEvaluationSet(referenceGraph,states*3,makeEven(states*alphabet));

      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        final int tracesToGenerate = makeEven(traceQuantity);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (int)(traceLengthMultiplier*states*alphabet);
            }
   
            @Override
            public int getPrefixLength(int len) {
              return len;
            }
          });

        if (onlyUsePositives)
        {
          pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
            @Override
            public boolean shouldBeReturned(Object name) {
              return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
            }
          }));
        }
        else
          pta.paths.augmentPTA(generator.getAllSequences(0));
   
        List<List<Label>> sPlus = generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
        List<List<Label>> sMinus= generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return !((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
        assert sPlus.size() > 0;
        assert sMinus.size() > 0;
        final MarkovModel m= new MarkovModel(chunkLen,true,true);
        m.createMarkovLearner(sPlus, sMinus,false);
       
        pta.clearColours();

        if (!onlyUsePositives)
          assert pta.getStateNumber() > pta.getAcceptStateNumber() : "graph with only accept states but onlyUsePositives is not set";
        else
          assert pta.getStateNumber() == pta.getAcceptStateNumber() : "graph with negatives but onlyUsePositives is set";
       
        final Configuration deepCopy = pta.config.copy();deepCopy.setLearnerCloneGraph(true);
        SampleData dataSample=new SampleData();
        dataSample.miscGraphs = new TreeMap<String,ScoresForGraph>();
        List<LearnerThatCanClassifyPairs> learnerList = new ArrayList<LearnerThatCanClassifyPairs>();
       
        LearnerGraph ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);
        learnerList.add(new ReferenceLearnerUsingSiccoScoring(learnerEval,ptaCopy,true));
        ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);
        learnerList.add(new ReferenceLearnerUsingSiccoScoring(learnerEval,ptaCopy,false));
        ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);
        learnerList.add(new KTailsReferenceLearner(learnerEval,ptaCopy,true,1));
        ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);
        learnerList.add(new KTailsReferenceLearner(learnerEval,ptaCopy,true,2));
        ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);
        learnerList.add(new KTailsReferenceLearner(learnerEval,ptaCopy,false,1));
        ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);
        learnerList.add(new KTailsReferenceLearner(learnerEval,ptaCopy,false,2));
        ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);
        learnerList.add(new EDSMReferenceLearner(learnerEval,ptaCopy,1));
        ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);
        learnerList.add(new EDSMReferenceLearner(learnerEval,ptaCopy,2));
        ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);
        learnerList.add(new EDSMReferenceLearner(learnerEval,ptaCopy,3));
        ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);
        learnerList.add(new EDSMReferenceLearner(learnerEval,ptaCopy,4));
       
        for(LearnerThatCanClassifyPairs learnerToUse:learnerList)
          try
          {
View Full Code Here

TOP

Related Classes of statechum.analysis.learning.rpnicore.LearnerGraph$ScoreComputationCallback

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.