Package statechum.analysis.learning.rpnicore

Examples of statechum.analysis.learning.rpnicore.LearnerGraph$NonExistingPaths


    DirectedSparseVertex init = new DirectedSparseVertex();
    init.addUserDatum(JUConstants.INITIAL, true, UserData.SHARED);
    init.addUserDatum(JUConstants.ACCEPTED, false, UserData.SHARED);
    init.addUserDatum(JUConstants.LABEL, "A", UserData.SHARED);
    g.addVertex(init);
    PTASequenceEngine engine = new PTA_FSMStructure(new LearnerGraph(g,config));
    engine.containsSequence(new ArrayList<String>());
  }
View Full Code Here


  }

  @Test
  public final void test_stringCollectionSize0()
  {
    fsm = new LearnerGraph(TestFSMAlgo.buildGraph("A-a->A-b->B", "test_sequenceSet3_6"),config);
    en = new PTA_FSMStructure(fsm);   
    SequenceSet seq = en.new SequenceSet();seq.setIdentity();
    vertifyPTA(en, 1, new String[][] {
        new String[] {}
    });
View Full Code Here

  }
 
  @Test
  public final void test_stringCollectionSize1()
  {
    fsm = new LearnerGraph(TestFSMAlgo.buildGraph("A-a->A-b->B", "test_sequenceSet3_6"),config);
    en = new PTA_FSMStructure(fsm);   
    SequenceSet seq = en.new SequenceSet();seq.setIdentity();
    seq.crossWithSequence(Arrays.asList(new String[] {"b","a"}));
    vertifyPTA(en, 1, new String[][] {
        new String[] {"b","a"}
View Full Code Here

 
  @Test
  public final void testKtails3()
  {
    testConfig.setKlimit(2);
    LearnerGraph fsm = FsmParser.buildLearnerGraph("A-a->B-b->C-a->D-d->E / B-c->F-a->G-e->H / M-b->N / M-c->P", "testKtails3",testConfig,getLabelConverter());
    Assert.assertEquals(0,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("M"),fsm.findVertex("B")), true));
    Assert.assertEquals(-1,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("M"),fsm.findVertex("B")), false));
    Assert.assertEquals(0,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("B"),fsm.findVertex("M")), true));
    Assert.assertEquals(-1,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("B"),fsm.findVertex("M")), false));
 
View Full Code Here

   
    @Override
    public ThreadResult call() throws Exception
    {
      final int alphabet = 2*states;
      LearnerGraph referenceGraph = null;
      ThreadResult outcome = new ThreadResult();
      Label uniqueFromInitial = null;
      MachineGenerator mg = new MachineGenerator(states, 400 , (int)Math.round((double)states/5));mg.setGenerateConnected(true);
      do
      {
        referenceGraph = mg.nextMachine(alphabet,seed, config, converter).pathroutines.buildDeterministicGraph();// reference graph has no reject-states, because we assume that undefined transitions lead to reject states.
        if (pickUniqueFromInitial)
        {
          Map<Label,CmpVertex> uniques = uniqueFromState(referenceGraph);
          if(!uniques.isEmpty())
          {
            Entry<Label,CmpVertex> entry = uniques.entrySet().iterator().next();
            referenceGraph.setInit(entry.getValue());uniqueFromInitial = entry.getKey();
          }
        }
      }
      while(pickUniqueFromInitial && uniqueFromInitial == null);
     
      LearnerEvaluationConfiguration learnerEval = new LearnerEvaluationConfiguration(config);learnerEval.setLabelConverter(converter);
      final Collection<List<Label>> testSet = PaperUAS.computeEvaluationSet(referenceGraph,states*3,states*alphabet);
     
      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        // test sequences will be distributed around
        final int pathLength = generator.getPathLength();
        // The total number of elements in test sequences (alphabet*states*traceQuantity) will be distributed around (random(pathLength)+1). The total size of PTA is a product of these two.
        // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
        // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
        final int tracesToGenerate = makeEven(traceQuantity);
        final Random rnd = new Random(seed*31+attempt);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return 2*states*alphabet;//(rnd.nextInt(pathLength)+1)*lengthMultiplier;
            }
   
            @Override
            public int getPrefixLength(int len) {
              return len;
            }
          });

        if (onlyUsePositives)
          pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
            @Override
            public boolean shouldBeReturned(Object name) {
              return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
            }
          }));
        else
          pta.paths.augmentPTA(generator.getAllSequences(0));// the PTA will have very few reject-states because we are generating few sequences and hence there will be few negative sequences.
          // In order to approximate the behaviour of our case study, we need to compute which pairs are not allowed from a reference graph and use those as if-then automata to start the inference.
        //pta.paths.augmentPTA(referenceGraph.wmethod.computeNewTestSet(referenceGraph.getInit(),1));
   
        List<List<Label>> sPlus = generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
        List<List<Label>> sMinus= generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return !((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
        assert sPlus.size() > 0;
        assert sMinus.size() > 0;
        final MarkovModel m= new MarkovModel(chunkLen,true,true);
        m.createMarkovLearner(sPlus, sMinus,false);
       
        pta.clearColours();
        synchronized (AbstractLearnerGraph.syncObj) {
          //PaperUAS.computePTASize(selectionID+" attempt: "+attempt+" with unique: ", pta, referenceGraph);
        }
       
        if (!onlyUsePositives)
          assert pta.getStateNumber() > pta.getAcceptStateNumber() : "graph with only accept states but onlyUsePositives is not set";
        else
          assert pta.getStateNumber() == pta.getAcceptStateNumber() : "graph with negatives but onlyUsePositives is set";
       
        LearnerMarkovPassive learnerOfPairs = null;
        LearnerGraph actualAutomaton = null;
       
        final Configuration deepCopy = pta.config.copy();deepCopy.setLearnerCloneGraph(true);
        LearnerGraph ptaCopy = new LearnerGraph(deepCopy);LearnerGraph.copyGraphs(pta, ptaCopy);

        // now use pathsToMerge to compute which states can/cannot be merged together.
        LearnerGraph trimmedReference = trimUncoveredTransitions(pta,referenceGraph);
        final ConsistencyChecker checker = new MarkovClassifier.DifferentPredictionsInconsistencyNoBlacklisting();
        //long inconsistencyForTheReferenceGraph = MarkovClassifier.computeInconsistency(trimmedReference, m, checker,false);
        //System.out.println("Inconsistency of trimmed reference : "+inconsistencyForTheReferenceGraph);
       
        //if (inconsistencyForTheReferenceGraph != 53)
        //  break;// ignore automata where we get good results.
         
        MarkovClassifier ptaClassifier = new MarkovClassifier(m,pta);
        final List<List<Label>> pathsToMerge=ptaClassifier.identifyPathsToMerge(checker);
        final Collection<Set<CmpVertex>> verticesToMergeBasedOnInitialPTA=ptaClassifier.buildVerticesToMergeForPaths(pathsToMerge);

        /*
        List<StatePair> pairsListInitialMerge = ptaClassifier.buildVerticesToMergeForPath(pathsToMerge);
        LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMergeInitialMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
        int scoreInitialMerge = pta.pairscores.computePairCompatibilityScore_general(null, pairsListInitialMerge, verticesToMergeInitialMerge);
        assert scoreInitialMerge >= 0;
        final LearnerGraph ptaAfterInitialMerge = MergeStates.mergeCollectionOfVertices(pta, null, verticesToMergeInitialMerge);
        final CmpVertex vertexWithMostTransitions = findVertexWithMostTransitions(ptaAfterInitialMerge,MarkovClassifier.computeInverseGraph(pta));
        ptaAfterInitialMerge.clearColours();ptaAfterInitialMerge.getInit().setColour(null);vertexWithMostTransitions.setColour(JUConstants.RED);
        ptaClassifier = new MarkovClassifier(m,ptaAfterInitialMerge);// rebuild the classifier
        LearnerGraphND inverseOfPtaAfterInitialMerge = MarkovClassifier.computeInverseGraph(ptaAfterInitialMerge);
        System.out.println("Centre vertex: "+vertexWithMostTransitions+" "+countTransitions(ptaAfterInitialMerge, inverseOfPtaAfterInitialMerge, vertexWithMostTransitions));
        //checkIfSingleStateLoopsCanBeFormed(pta,m,referenceGraph,pathsToMerge,directionForwardOrInverse);
        /*
        System.out.println("initially: "+whatToMerge.size()+" clusters "+whatToMerge+"\nafter sideways "+clustersOfStates.size()+" clusters "+clustersOfStates);
        showInconsistenciesForDifferentMergers(referenceGraph,m,pta,clustersOfStates);
         */
       
        if (pickUniqueFromInitial)
        {
          pta = mergeStatesForUnique(pta,uniqueFromInitial);
          learnerOfPairs = new LearnerMarkovPassive(learnerEval,referenceGraph,pta);learnerOfPairs.setMarkovModel(m);
          learnerOfPairs.setLabelsLeadingFromStatesToBeMerged(Arrays.asList(new Label[]{uniqueFromInitial}));
         
          actualAutomaton = learnerOfPairs.learnMachine(new LinkedList<List<Label>>(),new LinkedList<List<Label>>());

          LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
          List<StatePair> pairsList = LearnerThatCanClassifyPairs.buildVerticesToMerge(actualAutomaton,learnerOfPairs.getLabelsLeadingToStatesToBeMerged(),learnerOfPairs.getLabelsLeadingFromStatesToBeMerged());
          if (!pairsList.isEmpty())
          {
            int score = actualAutomaton.pairscores.computePairCompatibilityScore_general(null, pairsList, verticesToMerge);
            if (score < 0)
            {
              learnerOfPairs = new LearnerMarkovPassive(learnerEval,referenceGraph,pta);learnerOfPairs.setMarkovModel(m);
              learnerOfPairs.setLabelsLeadingFromStatesToBeMerged(Arrays.asList(new Label[]{uniqueFromInitial}));
              actualAutomaton = learnerOfPairs.learnMachine(new LinkedList<List<Label>>(),new LinkedList<List<Label>>());
              score = actualAutomaton.pairscores.computePairCompatibilityScore_general(null, pairsList, verticesToMerge);
              throw new RuntimeException("last merge in the learning process was not possible");
            }
            actualAutomaton = MergeStates.mergeCollectionOfVertices(actualAutomaton, null, verticesToMerge);
          }
        }
        else
        {// not merging based on a unique transition from an initial state
          //learnerEval.config.setGeneralisationThreshold(1);
          learnerOfPairs = new LearnerMarkovPassive(learnerEval,referenceGraph,pta);learnerOfPairs.setMarkovModel(m);

          //learnerOfPairs.setPairsToMerge(checkVertices(pta, referenceGraph, m));
          final LearnerGraph finalReferenceGraph = referenceGraph;

          learnerOfPairs.setScoreComputationOverride(new statechum.analysis.learning.rpnicore.PairScoreComputation.RedNodeSelectionProcedure() {
           
            @SuppressWarnings("unused")
            @Override
            public CmpVertex selectRedNode(LearnerGraph gr,Collection<CmpVertex> reds, Collection<CmpVertex> tentativeRedNodes)
            {
              return tentativeRedNodes.iterator().next();
            }
           
            @SuppressWarnings("unused")
            @Override
            public CmpVertex resolvePotentialDeadEnd(LearnerGraph gr, Collection<CmpVertex> reds, List<PairScore> pairs)
            {
              PairScore p = LearnerThatCanClassifyPairs.pickPairQSMLike(pairs);
              LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
              // constructPairsToMergeBasedOnSetsToMerge(coregraph.transitionMatrix.keySet(),verticesToMergeBasedOnInitialPTA)
              int genScore = coregraph.pairscores.computePairCompatibilityScore_general(p, null, verticesToMerge);
              assert genScore >= 0;
              LearnerGraph merged = MergeStates.mergeCollectionOfVertices(coregraph, null, verticesToMerge);
              long value = MarkovClassifier.computeInconsistency(merged, m, checker,false);
              inconsistencyFromAnEarlierIteration = value;
              return null;
            }
           
            long inconsistencyFromAnEarlierIteration = 0;
            LearnerGraph coregraph = null;
           
            LearnerGraphND inverseGraph = null;
            /** Where I have a set of paths to merge because I have identified specific states, this map is constructed that maps vertices to be merged together to the partition number that corresponds to them. */
            Map<CmpVertex,Integer> vertexToPartition = new TreeMap<CmpVertex,Integer>();
           
            @Override
            public void initComputation(LearnerGraph graph)
            {
              coregraph = graph;
              //labelStatesAwayFromRoot(coregraph,m.getChunkLen()-1);
              inverseGraph = (LearnerGraphND)MarkovClassifier.computeInverseGraph(coregraph,true);
              vertexToPartition.clear();
              int partitionNumber=0;
              for(Set<CmpVertex> set:verticesToMergeBasedOnInitialPTA)
              {
                for(CmpVertex v:set) vertexToPartition.put(v, partitionNumber);
                ++partitionNumber;
              }
            }
           
            @Override
            public long overrideScoreComputation(PairScore p)
            {
              /*
              MarkovClassifier cl = new MarkovClassifier(m, coregraph);
              long score = 0;
              Map<Label, MarkovOutcome> predictedFromRed=cl.predictTransitionsFromState(p.getR(), null, m.getChunkLen(), null);
              for(Entry<Label,MarkovOutcome> entry:cl.predictTransitionsFromState(p.getQ(), null, m.getChunkLen(), null).entrySet())
              {
                MarkovOutcome red = predictedFromRed.get(entry.getKey());
                if (red == null || red != entry.getValue())
                {
                  score = -1;break;
                }
              }
             
              if (score >= 0)
              {
                LearnerGraph extendedGraph = cl.constructMarkovTentative();
                score = extendedGraph.pairscores.computePairCompatibilityScore(p);
              }
              */

              long score = p.getScore();//computeScoreUsingMarkovFanouts(coregraph,origInverse,m,callbackAlphabet,p);
              if (score < 0)
                return score;
              long currentInconsistency = 0;
              Integer a=vertexToPartition.get(p.getR()), b = vertexToPartition.get(p.getQ());
              LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
              int genScore = coregraph.pairscores.computePairCompatibilityScore_general(p, null, verticesToMerge);
              if (genScore >= 0)
              {
                LearnerGraph merged = MergeStates.mergeCollectionOfVertices(coregraph, null, verticesToMerge);
                currentInconsistency = MarkovClassifier.computeInconsistency(merged, m, checker,
                    false
                    //p.getQ().getStringId().equals("P2672") && p.getR().getStringId().equals("P2209")
                    )-inconsistencyFromAnEarlierIteration;
               
                if (a == null || b == null || a != b)
                  score -= currentInconsistency;
              }
              //System.out.println(p.toString()+", score "+score);
             
              /*
              ArrayList<PairScore> pairOfInterest = new ArrayList<PairScore>(1);pairOfInterest.add(p);
              List<PairScore> correctPairs = new ArrayList<PairScore>(1), wrongPairs = new ArrayList<PairScore>(1);
              SplitSetOfPairsIntoRightAndWrong(coregraph, finalReferenceGraph, pairOfInterest, correctPairs, wrongPairs);
              long score = p.getScore();//computeScoreUsingMarkovFanouts(coregraph,origInverse,m,callbackAlphabet,p);
              if (score < 0)
                return score;
              long currentInconsistency = 0;
              double relativeInconsistency = 0.;
              Integer a=vertexToPartition.get(p.getR()), b = vertexToPartition.get(p.getQ());
              LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
              int genScore = coregraph.pairscores.computePairCompatibilityScore_general(p, null, verticesToMerge);
              if (genScore >= 0)
                LearnerGraph merged = MergeStates.mergeCollectionOfVertices(coregraph, null, verticesToMerge);
                currentInconsistency = MarkovClassifier.computeInconsistency(merged, m, checker,
                    false
                    //p.getQ().getStringId().equals("P2672") && p.getR().getStringId().equals("P2209")
                    )-inconsistencyFromAnEarlierIteration;
                relativeInconsistency = new MarkovClassifier(m, merged).computeRelativeInconsistency(checker);
              }
             
              // A green state next to a red may have many incoming paths, more than in a PTA, some of which may predict its outgoing transition as non-existent.
              // When a merge happens this state may be merged into the one with a similar surroundings. In this way, two states with the same in-out inconsistency
              // are merged into the one with that inconsistency, turning two inconsistencies into one and hence reducing the total number of inconsistencies.
              score=genScore;
              if (relativeInconsistency > 5 || relativeInconsistency > genScore)
                score=-1;
              */
              //System.out.println("pair: "+p+" score: "+score);
              /*
              if (score < 0 && wrongPairs.isEmpty())
                System.out.println("incorrectly blocked merge of "+p+" a="+a+" b="+b+" inconsistency = "+currentInconsistency+" relative: "+relativeInconsistency+" genscore is "+genScore);
              if (score >= 0 && correctPairs.isEmpty())
                System.out.println("invalid merge of "+p+" a="+a+" b="+b+" inconsistency = "+currentInconsistency+" relative: "+relativeInconsistency+" genscore is "+genScore);
              */

              return score;
            }

            /** This one returns a set of transitions in all directions. */
            @Override
            public Collection<Entry<Label, CmpVertex>> getSurroundingTransitions(CmpVertex currentRed)
            {
              return null;//obtainSurroundingTransitions(coregraph,inverseGraph,currentRed);
            }

          });

          actualAutomaton = learnerOfPairs.learnMachine(new LinkedList<List<Label>>(),new LinkedList<List<Label>>());
        }

        {
          LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>> verticesToMerge = new LinkedList<AMEquivalenceClass<CmpVertex,LearnerGraphCachedData>>();
          int genScore = actualAutomaton.pairscores.computePairCompatibilityScore_general(null, constructPairsToMergeBasedOnSetsToMerge(actualAutomaton.transitionMatrix.keySet(),verticesToMergeBasedOnInitialPTA), verticesToMerge);
          assert genScore >= 0;
          actualAutomaton = MergeStates.mergeCollectionOfVertices(actualAutomaton, null, verticesToMerge);
          long chains = 0,tails=0,doubleChains=0;
          for(Entry<CmpVertex,Map<Label,CmpVertex>> entry:actualAutomaton.transitionMatrix.entrySet())
          {
            if (entry.getValue().isEmpty())
              ++tails;
            if (entry.getValue().size() == 1)
            {
              ++chains;
              CmpVertex target=entry.getValue().values().iterator().next();
              if (actualAutomaton.transitionMatrix.get(target).size() == 1)
                ++doubleChains;
            }
          }
          //System.out.println("Chains: "+chains+" Tails: "+tails+" Double chains: "+doubleChains);
         
          //System.out.println("Inconsistency for the original: "+new MarkovClassifier(ptaClassifier.model, trimmedReference).countPossibleInconsistencies(checker)+" and for the learnt: "+new MarkovClassifier(ptaClassifier.model, actualAutomaton).countPossibleInconsistencies(checker));
          //actualAutomaton = formLoops(actualAutomaton, m, directionForwardOrInverse);
        }

        SampleData dataSample = new SampleData(null,null);
        //dataSample.difference = new DifferenceToReferenceDiff(0, 0);
        //dataSample.differenceForReferenceLearner = new DifferenceToReferenceDiff(0, 0);
       
        VertID rejectVertexID = null;
        for(CmpVertex v:actualAutomaton.transitionMatrix.keySet())
          if (!v.isAccept())
          {
            assert rejectVertexID == null : "multiple reject vertices in learnt automaton, such as "+rejectVertexID+" and "+v;
            rejectVertexID = v;break;
          }
        if (rejectVertexID == null)
          rejectVertexID = actualAutomaton.nextID(false);
        actualAutomaton.pathroutines.completeGraphPossiblyUsingExistingVertex(rejectVertexID);// we need to complete the graph, otherwise we are not matching it with the original one that has been completed.
        dataSample.actualLearner = estimateDifference(referenceGraph,actualAutomaton,testSet);

        LearnerGraph outcomeOfReferenceLearner = new ReferenceLearner(learnerEval,referenceGraph,ptaCopy,false).learnMachine(new LinkedList<List<Label>>(),new LinkedList<List<Label>>());
        dataSample.referenceLearner = estimateDifference(referenceGraph, outcomeOfReferenceLearner,testSet);
        System.out.println("actual: "+actualAutomaton.getStateNumber()+" from reference learner: "+outcomeOfReferenceLearner.getStateNumber()+ " difference actual is "+dataSample.actualLearner+ " difference ref is "+dataSample.referenceLearner);
        outcome.samples.add(dataSample);
      }
     
      return outcome;
    }
View Full Code Here

 
  @Test
  public final void testKtails4()
  {
    testConfig.setKlimit(2);
    LearnerGraph fsm = FsmParser.buildLearnerGraph("A-a->B-b->C-a->D-d->E / B-c->F-a->G-e->H / M-b->N ", "testKtails4",testConfig,getLabelConverter());
    Assert.assertEquals(0,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("M"),fsm.findVertex("B")), true));
    Assert.assertEquals(-1,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("M"),fsm.findVertex("B")), false));
    Assert.assertEquals(0,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("B"),fsm.findVertex("M")), true));
    Assert.assertEquals(-1,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("B"),fsm.findVertex("M")), false));
 
View Full Code Here

 
  @Test
  public final void testKtails5()
  {
    testConfig.setKlimit(2);
    LearnerGraph fsm = FsmParser.buildLearnerGraph("A-a->B-b->C-a->D-d->E / B-c->F-a->G-e->H / M-c->P", "testKtails5",testConfig,getLabelConverter());
    Assert.assertEquals(0,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("M"),fsm.findVertex("B")), true));
    Assert.assertEquals(-1,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("M"),fsm.findVertex("B")), false));
    Assert.assertEquals(0,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("B"),fsm.findVertex("M")), true));
    Assert.assertEquals(-1,fsm.pairscores.computeStateScoreKTails(new StatePair(fsm.findVertex("B"),fsm.findVertex("M")), false));
 
View Full Code Here

      int score = graph.pairscores.computePairCompatibilityScore_general(null, pairsList, verticesToMerge);
      if (score < 0)
        outcome = dREJECT;
      else
      {
        LearnerGraph merged = MergeStates.mergeCollectionOfVertices(graph, null, verticesToMerge);
        outcome = computeInconsistency(merged,model,checker,false);
      }
    }
   
    return outcome;
View Full Code Here

    Map<CmpVertex,Map<Label,UpdatablePairInteger>> state_outgoing_occurence=new HashMap<CmpVertex,Map<Label,UpdatablePairInteger>>();
    /** Maps states to a function associating labels to a probability of a transition with the label of interest from a state of interest. Computed from {@link MarkovUniversalLearner#state_outgoing_occurence}. */
    Map<CmpVertex,Map<Label,UpdatablePairDouble>> state_outgoing=new HashMap<CmpVertex,Map<Label,UpdatablePairDouble>>();

    final Configuration shallowCopy = graph.config.copy();shallowCopy.setLearnerCloneGraph(false);
    LearnerGraph outcome = new LearnerGraph(shallowCopy);
    LearnerGraph.copyGraphs(graph, outcome);
    final Set<Label> allElementsOfAlphabet = graph.learnerCache.getAlphabet();
    // mapping map to store all paths leave each state in different length
      for(CmpVertex vert:graph.transitionMatrix.keySet())
      {
View Full Code Here

    /** Maps states to a function associating labels to a probability of a transition with the label of interest from a state of interest. Computed from {@link MarkovUniversalLearner#state_outgoing_occurence}. */
    Map<CmpVertex,Map<Label,MarkovOutcome>> state_outgoing=predictTransitions();

    final Configuration shallowCopy = graph.config.copy();shallowCopy.setLearnerCloneGraph(false);
    LearnerGraph graphWithPredictedTransitions = new LearnerGraph(shallowCopy);
    LearnerGraph.copyGraphs(graph, graphWithPredictedTransitions);

    // in this part the tree is extended depend on their outgoing transition probabilities
     for(Entry<CmpVertex, Map<Label, MarkovOutcome>> outgoing:state_outgoing.entrySet())
     {
View Full Code Here

TOP

Related Classes of statechum.analysis.learning.rpnicore.LearnerGraph$NonExistingPaths

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.