Package statechum.analysis.learning.PrecisionRecall

Examples of statechum.analysis.learning.PrecisionRecall.ConfusionMatrix


     * @param cpuNumber the number of processors to use. Usually set to 1 because we run as many experiments as there are CPUs and so individual experiments should not consume more computational power than we have available for them.
     */
    public static DifferenceToReferenceFMeasure estimationOfDifference(LearnerGraph referenceGraph, LearnerGraph actualAutomaton, Collection<List<Label>> testSet)
    {
           LearnerGraph learntGraph = new LearnerGraph(actualAutomaton.config);AbstractPathRoutines.removeRejectStates(actualAutomaton,learntGraph);
           ConfusionMatrix mat = DiffExperiments.classify(testSet, referenceGraph, learntGraph);
      return new DifferenceToReferenceFMeasure(mat);
    }
View Full Code Here


     * @param cpuNumber the number of processors to use. Usually set to 1 because we run as many experiments as there are CPUs and so individual experiments should not consume more computational power than we have available for them.
     */
    public static DifferenceToReferenceLanguageBCR estimationOfDifference(LearnerGraph referenceGraph, LearnerGraph actualAutomaton, Collection<List<Label>> testSet)
    {
           LearnerGraph learntGraph = new LearnerGraph(actualAutomaton.config);AbstractPathRoutines.removeRejectStates(actualAutomaton,learntGraph);
           ConfusionMatrix mat = DiffExperiments.classify(testSet, referenceGraph, learntGraph);
      return new DifferenceToReferenceLanguageBCR(mat);
    }
View Full Code Here

  private Pair<Double,Long> compareLang(LearnerGraph from, LearnerGraph to,
      Collection<List<Label>> sequences)
  {
   
    final long startTime = System.nanoTime();
    ConfusionMatrix matrix = classify(sequences, from,to);
    final long duration = System.nanoTime() - startTime;
    double result = matrix.fMeasure();
    assert !Double.isNaN(result);
    return new Pair<Double,Long>(result,duration);
  }
View Full Code Here

      else if(!inTarget && inMutated)
        fp++;
      else if(!inTarget && !inMutated)
        tn++;
    }
    return new ConfusionMatrix(tp,tn,fp,fn);
  }
View Full Code Here

    set.clear();
    set.addAll(expected);
    set.removeAll(detected);
    fn = set.size();
   
    ConfusionMatrix conf = new ConfusionMatrix(tp, tn, fp, fn);
    return conf.fMeasure();
  }
View Full Code Here

     * @param cpuNumber the number of processors to use. Usually set to 1 because we run as many experiments as there are CPUs and so individual experiments should not consume more computational power than we have available for them.
     */
    public static DifferenceToReferenceFMeasure estimationOfDifference(LearnerGraph referenceGraph, LearnerGraph actualAutomaton, Collection<List<Label>> testSet)
    {
           LearnerGraph learntGraph = new LearnerGraph(actualAutomaton.config);AbstractPathRoutines.removeRejectStates(actualAutomaton,learntGraph);
           ConfusionMatrix mat = DiffExperiments.classify(testSet, referenceGraph, learntGraph);
      return new DifferenceToReferenceFMeasure(mat);
    }
View Full Code Here

     * @param cpuNumber the number of processors to use. Usually set to 1 because we run as many experiments as there are CPUs and so individual experiments should not consume more computational power than we have available for them.
     */
    public static DifferenceToReferenceLanguageBCR estimationOfDifference(LearnerGraph referenceGraph, LearnerGraph actualAutomaton, Collection<List<Label>> testSet)
    {
           LearnerGraph learntGraph = new LearnerGraph(actualAutomaton.config);AbstractPathRoutines.removeRejectStates(actualAutomaton,learntGraph);
           ConfusionMatrix mat = DiffExperiments.classify(testSet, referenceGraph, learntGraph);
      return new DifferenceToReferenceLanguageBCR(mat);
    }
View Full Code Here

     * @param cpuNumber the number of processors to use. Usually set to 1 because we run as many experiments as there are CPUs and so individual experiments should not consume more computational power than we have available for them.
     */
    public static DifferenceToReferenceLanguage estimationOfDifference(LearnerGraph referenceGraph, LearnerGraph actualAutomaton, Collection<List<Label>> testSet)
    {
           LearnerGraph learntGraph = new LearnerGraph(actualAutomaton.config);AbstractPathRoutines.removeRejectStates(actualAutomaton,learntGraph);
           ConfusionMatrix mat = DiffExperiments.classify(testSet, referenceGraph, learntGraph);
      return new DifferenceToReferenceLanguage(mat);
    }
View Full Code Here

     * @param cpuNumber the number of processors to use. Usually set to 1 because we run as many experiments as there are CPUs and so individual experiments should not consume more computational power than we have available for them.
     */
    public static DifferenceToReferenceLanguageBCR estimationOfDifference(LearnerGraph referenceGraph, LearnerGraph actualAutomaton, Collection<List<Label>> testSet)
    {
           LearnerGraph learntGraph = new LearnerGraph(actualAutomaton.config);AbstractPathRoutines.removeRejectStates(actualAutomaton,learntGraph);
           ConfusionMatrix mat = DiffExperiments.classify(testSet, referenceGraph, learntGraph);
      return new DifferenceToReferenceLanguageBCR(mat);
    }
View Full Code Here

     * @param cpuNumber the number of processors to use. Usually set to 1 because we run as many experiments as there are CPUs and so individual experiments should not consume more computational power than we have available for them.
     */
    public static DifferenceToReferenceLanguage estimationOfDifference(LearnerGraph referenceGraph, LearnerGraph actualAutomaton, Collection<List<Label>> testSet)
    {
           LearnerGraph learntGraph = new LearnerGraph(actualAutomaton.config);AbstractPathRoutines.removeRejectStates(actualAutomaton,learntGraph);
           ConfusionMatrix mat = DiffExperiments.classify(testSet, referenceGraph, learntGraph);
      return new DifferenceToReferenceLanguage(mat);
    }
View Full Code Here

TOP

Related Classes of statechum.analysis.learning.PrecisionRecall.ConfusionMatrix

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.