Package statechum.analysis.learning

Examples of statechum.analysis.learning.MarkovModel$MarkovOutcome


  /** Tests that upon a label labelled as invalid, subsequent inconsistency checks are stopped. It is hence equivalent to a single incoming path. */
  @Test
  public void testPredictTransitionsFromStatesSideways1()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(2,false,true);
    new MarkovClassifier(m,graph).updateMarkov(false);
   
    Assert.assertEquals(9+graph.getCache().getAlphabet().size(),m.predictionsMatrix.size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / A-c->A / T-u->T-b->T","testCheckFanoutInconsistencySideways4",config, converter);// T is there to ensure that graph2's alphabet is the same as that of graph.
    Map<Label, MarkovOutcome> predictions = new MarkovClassifier(m,graph2).predictTransitionsFromState(graph2.getInit(),null,m.getChunkLen(),null);
   
    Assert.assertEquals(MarkovOutcome.positive,predictions.get(lblU));
    Assert.assertEquals(MarkovOutcome.positive,predictions.get(lblC));
    Assert.assertEquals(MarkovOutcome.positive,predictions.get(lblA));
  }
View Full Code Here


  }
 
  @Test
  public void testPredictTransitionsFromStatesForward1()
  {
    MarkovModel m = new MarkovModel(2,true,true);
    Assert.assertTrue(m.predictionsMatrix.isEmpty());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / A-c->A","testCheckFanoutInconsistencySideways4",config, converter);
    Map<CmpVertex, Map<Label, MarkovOutcome>> predictions = new MarkovClassifier(m, graph2).predictTransitions();
    Assert.assertTrue(predictions.isEmpty());// empty Markov means no predictions.
View Full Code Here

 
  @Test
  public void testPredictTransitionsFromStatesForward2a()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(2,true,true);
    new MarkovClassifier(m,graph).updateMarkov(true);
    Assert.assertEquals(4,m.predictionsMatrix.size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / A-c->A/ T-u->T-b->T","testPredictTransitionsFromStatesForward2",config, converter);
    Map<CmpVertex, Map<Label, MarkovOutcome>> predictions = new MarkovClassifier(m, graph2).predictTransitions();
View Full Code Here

  /** Very similar to {@link #testPredictTransitionsFromStatesForward2a()} except that the graph to predict from has a single state and even that reject. */
  @Test
  public void testPredictTransitionsFromStatesForward2b()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(2,true,true);
    new MarkovClassifier(m,graph).updateMarkov(true);
    Assert.assertEquals(4,m.predictionsMatrix.size());
   
    final LearnerGraph graph2 = new LearnerGraph(config);graph2.getInit().setAccept(false);
    Map<CmpVertex, Map<Label, MarkovOutcome>> predictions = new MarkovClassifier(m, graph2).predictTransitions();
    Assert.assertTrue(predictions.isEmpty());
    predictions = new MarkovClassifier(new MarkovModel(2,false,true),graph2).predictTransitions();
    Assert.assertTrue(predictions.isEmpty());
  }
View Full Code Here

 
  @Test
  public void testPredictTransitionsFromStatesForward3()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(2,true,true);
    new MarkovClassifier(m,graph).updateMarkov(true);
    Assert.assertEquals(4,m.predictionsMatrix.size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / A-c->A/ T-a->T-u->T-b->T","testPredictTransitionsFromStatesForward2",config, converter);
    LearnerGraph extendedGraph = new MarkovClassifier(m,graph2).constructMarkovTentative();
View Full Code Here

  /** Here the alphabet is limited to what is an the tentative automaton, hence nothing is added. */
  @Test
  public void testPredictTransitionsFromStatesSideways2()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(2,false,true);
    new MarkovClassifier(m,graph).updateMarkov(true);
    Assert.assertEquals(9,m.predictionsMatrix.size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B","testCheckFanoutInconsistencySideways4",config, converter);
    LearnerGraph extendedGraph = new MarkovClassifier(m,graph2).constructMarkovTentative();
View Full Code Here

  /** Tests that upon a label labelled as invalid, subsequent inconsistency checks are stopped. It is hence equivalent to a single incoming path. */
  @Test
  public void testPredictTransitionsFromStatesSideways3()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(2,false,true);
    new MarkovClassifier(m,graph).updateMarkov(true);
    Assert.assertEquals(9,m.predictionsMatrix.size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / T-a->T-u->T-b->T-c->T","testPredictTransitionsFromStatesSideways3",config, converter);
    LearnerGraph extendedGraph = new MarkovClassifier(m,graph2).constructMarkovTentative();
View Full Code Here

  /** Same as {@link #testPredictTransitionsFromStatesSideways1()}, except that the path beyond is empty rather than null. */
  @Test
  public void testPredictTransitionsFromStatesWithPathBeyondCurrentState1()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(2,false,true);
    new MarkovClassifier(m,graph).updateMarkov(false);
    Assert.assertEquals(9+graph.getCache().getAlphabet().size(),m.predictionsMatrix.size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / A-c->A / T-u->T-b->T","testCheckFanoutInconsistencySideways4",config, converter);// T is there to ensure that graph2's alphabet is the same as that of graph.
    Map<Label, MarkovOutcome> predictions = new MarkovClassifier(m, graph2).predictTransitionsFromState(graph2.getInit(),Arrays.asList(new Label[]{}),m.getChunkLen(),null);
   
    Assert.assertEquals(MarkovOutcome.positive,predictions.get(lblU));
    Assert.assertEquals(MarkovOutcome.positive,predictions.get(lblC));
    Assert.assertEquals(MarkovOutcome.positive,predictions.get(lblA));
  }
View Full Code Here

  /** Same as {@link #testPredictTransitionsFromStatesSideways1()}, except that the path beyond is non-empty. */
  @Test
  public void testPredictTransitionsFromStatesWithPathBeyondCurrentState2()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    final MarkovModel m = new MarkovModel(2,false,true);
    new MarkovClassifier(m,graph).updateMarkov(false);
    Assert.assertEquals(9+graph.getCache().getAlphabet().size(),m.predictionsMatrix.size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B","testPredictTransitionsFromStatesWithPathBeyondCurrentState2",config, converter);
   
    Helper.checkForCorrectException(new whatToRun() {
      @Override
      public void run() throws NumberFormatException
      {
        new MarkovClassifier(m, graph2).predictTransitionsFromState(graph2.getInit(),Arrays.asList(new Label[]{lblC}),m.getChunkLen(),null);
      }
    }, IllegalArgumentException.class, "cannot be made by extension");
  }
View Full Code Here

  /** Almost the same as {@link #testPredictTransitionsFromStatesForward2()} except that the path beyond is empty rather than null. */
  @Test
  public void testPredictTransitionsFromStatesWithPathBeyondCurrentState3()
  {
    final LearnerGraph graph = FsmParser.buildLearnerGraph("A-a->B-b->C / B-u-#D / A-c->E-u->F / E-c->G","testUpdateMarkovSideways3",config, converter);
    MarkovModel m = new MarkovModel(2,true,true);
    new MarkovClassifier(m,graph).updateMarkov(true);
    Assert.assertEquals(4,m.predictionsMatrix.size());
   
    final LearnerGraph graph2 = FsmParser.buildLearnerGraph("A-a->B / A-c->A/ T-u->T-b->T","testPredictTransitionsFromStatesForward2",config, converter);
    Map<Label,MarkovOutcome> outgoing_labels_probabilities=new MarkovClassifier(m, graph2).predictTransitionsFromState(graph2.findVertex("B"),Arrays.asList(new Label[]{}),m.getChunkLen(),null);
    Assert.assertEquals(2,outgoing_labels_probabilities.size());
    Assert.assertEquals(MarkovOutcome.negative,outgoing_labels_probabilities.get(lblU));
    Assert.assertEquals(MarkovOutcome.positive,outgoing_labels_probabilities.get(lblB));
  }
View Full Code Here

TOP

Related Classes of statechum.analysis.learning.MarkovModel$MarkovOutcome

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.