public void testBuildVerticesToMergeForPath10()
{
LearnerGraph gr=FsmParser.buildLearnerGraph("A-a->B / A-b->A / B-a->C-d->D-a->E / D-c->D / E-d->E-e->F-d->F-u->F / G-f->G","testBuildVerticesToMergeForPath8",config, converter);
Collection<List<Label>> paths = new LinkedList<List<Label>>();paths.add(Arrays.asList(new Label[]{lblA}));paths.add(Arrays.asList(new Label[]{lblB}));paths.add(Arrays.asList(new Label[]{lblC}));paths.add(Arrays.asList(new Label[]{lblD}));paths.add(Arrays.asList(new Label[]{AbstractLearnerGraph.generateNewLabel("e", config, converter)}));paths.add(Arrays.asList(new Label[]{AbstractLearnerGraph.generateNewLabel("f", config, converter)}));paths.add(Arrays.asList(new Label[]{lblU}));
//for(LearnerGraph g:grForPaths.values()) System.out.println(g.transitionMatrix);
Collection<Set<CmpVertex>> collectionOfSets=new MarkovClassifier(new MarkovModel(2,true,true),gr).buildVerticesToMergeForPaths(paths);
Assert.assertEquals(3,collectionOfSets.size());
Iterator<Set<CmpVertex>> iterator = collectionOfSets.iterator();
Set<CmpVertex> partA = new TreeSet<CmpVertex>();partA.add(gr.findVertex("A"));partA.add(gr.findVertex("B"));partA.add(gr.findVertex("D"));
Set<CmpVertex> partB = new TreeSet<CmpVertex>();partB.add(gr.findVertex("C"));partB.add(gr.findVertex("E"));partB.add(gr.findVertex("F"));
Set<CmpVertex> partC = new TreeSet<CmpVertex>();partC.add(gr.findVertex("G"));