Package statechum

Examples of statechum.ProgressIndicator


                  learnerRunner.setOnlyUsePositives(onlyPositives);learnerRunner.setLengthMultiplier(lengthMultiplier);
                  learnerRunner.setSelectionID(selection+"_states"+states+"_sample"+sample);
                  runner.submit(learnerRunner);
                  ++numberOfTasks;
                }
              ProgressIndicator progress = new ProgressIndicator(new Date()+" evaluating "+numberOfTasks+" tasks for "+selection, numberOfTasks);
              for(int count=0;count < numberOfTasks;++count)
              {
                ThreadResult result = runner.take().get();// this will throw an exception if any of the tasks failed.
                if (gr_NewToOrig != null)
                {
                  for(SampleData sample:result.samples)
                    gr_NewToOrig.add(sample.differenceForReferenceLearner.getValue(),sample.difference.getValue());
                }
               
                for(SampleData sample:result.samples)
                  if (sample.differenceForReferenceLearner.getValue() > 0)
                    gr_QualityForNumberOfTraces.add(traceQuantity+"",sample.difference.getValue()/sample.differenceForReferenceLearner.getValue());
                progress.next();
              }
              if (gr_PairQuality != null)
              {
                synchronized(pairQualityCounter)
                {
View Full Code Here


        return name.startsWith("N_");
      }
    });
    Arrays.sort(files);
    int threads[] = new int[]{1,8};
    ProgressIndicator progress = new ProgressIndicator("eT:", files.length*threads.length);

    for(int fileNum = 0;fileNum < files.length;++fileNum)
    {
      File
      fileA=files[fileNum],
      fileB=files[(fileNum+1)%files.length];
      boolean fallback = TestGD_ExistingGraphs.detectFallbackToInitialPair(fileA, null, fileB, null);
      Assert.assertFalse(fallback);// our test files are very small hence must fit in memory

      for(int threadNo:threads)
      {
        for(double ratio:new double[]{0.3,0.9})
          for(int pairs:new int[]{0})
            result.add(new Object[]{new Integer(threadNo), new Integer(pairs),ratio,fileA,fileB});

        // -1. should be floating-point number otherwise it is turned into Integer and our parametersToString fails to match the resulting list of values.
        result.add(new Object[]{new Integer(threadNo), new Integer(0),-1.,fileA,fileB});
        progress.next();
      }
    }
    return result;
  }
View Full Code Here

      {
        return name.startsWith("N_");
    }});
    Arrays.sort(files);
    int threads[]=new int[]{1,8};
    ProgressIndicator progress = new ProgressIndicator("eND:", (files.length+1)*threads.length);

    // N_1320.xml+N_502.xml v.s. N_2070.xml+N_2232.xml takes a long while.
    addFilesToCollection(new File(testFilePath+"N_1320.xml"),new File(testFilePath+"N_502.xml"),
        new File(testFilePath+"N_2070.xml"),new File(testFilePath+"N_2232.xml"),result,threads,progress);
    for(int fileNum = 0;fileNum < files.length;++fileNum)
View Full Code Here

      
       DrawGraphs gr = new DrawGraphs();
    final RBoxPlot<Integer>
        uas_S=new RBoxPlot<Integer>("Time","BCR",new File("time_S_"+name+"_bcr.pdf"));
    Set<Integer> allFrames = collectionOfTraces.get(UAVAllSeeds).tracesForUAVandFrame.get(UAVAllSeeds).keySet();
    ProgressIndicator progress = new ProgressIndicator("UAS", allFrames.size());
   
    Random rnd = new Random(0);
    final int []SelectionChoices=new int [10];
   
    SelectionChoices[0]=pairchoiceORIG;
    for(int i=1;i<SelectionChoices.length;++i)
    {
      SelectionChoices[i]=rnd.nextInt();assert SelectionChoices[i] != pairchoiceMIN && SelectionChoices[i] != pairchoiceMAX && SelectionChoices[i] != pairchoiceORIG;
    }
   
      for(final Integer frame:allFrames)
      {
        List<LearnerGraph> graphs = new LinkedList<LearnerGraph>();
        for(int choice:SelectionChoices)
         {
          RPNIBlueFringe learner = new RPNIBlueFringe(learnerConfig,choice);
            final LearnerGraph actualAutomaton = learner.learn(collectionOfTraces.get(UAVAllSeeds).tracesForUAVandFrame.get(UAVAllSeeds).get(frame),true);
            long tmFinished = new Date().getTime();
            System.out.println("Learning complete, "+((tmFinished-tmStarted)/1000)+" sec");tmStarted = tmFinished;
            ConfusionMatrix matrix = DiffExperiments.classify(wMethod, graphReference, actualAutomaton);
            System.out.println("BCR for frame : "+frame+" = "+matrix.BCR()+", precision: "+matrix.getPrecision()+", recall: "+matrix.getRecall()+", specificity: "+matrix.getSpecificity()+", matrix: "+matrix+", log of choices: "+learner.logOfChoiceNumber);
            //Visualiser.updateFrame(actualAutomaton, graphReference);
            /*
            boolean foundSame = false;
            for(LearnerGraph g:graphs)
              if (WMethod.checkM(g, actualAutomaton) != null)
              {
                foundSame = true;break;
              }
            if (!foundSame) */graphs.add(actualAutomaton);
           
        GD<CmpVertex,CmpVertex,LearnerGraphCachedData,LearnerGraphCachedData> gd = new GD<CmpVertex,CmpVertex,LearnerGraphCachedData,LearnerGraphCachedData>();
        ChangesCounter<CmpVertex,CmpVertex,LearnerGraphCachedData,LearnerGraphCachedData> counter = new ChangesCounter<CmpVertex,CmpVertex,LearnerGraphCachedData,LearnerGraphCachedData>(graphReference, actualAutomaton, null);
        gd.computeGD(graphReference, actualAutomaton, ExperimentRunner.getCpuNumber(),counter,learnerConfig);
       
        int referenceEdges = graphReference.pathroutines.countEdges(), actualEdges = actualAutomaton.pathroutines.countEdges();
        System.out.println(counter.getRemoved()+","+counter.getAdded()+", difference is "+(((double)referenceEdges-counter.getRemoved())/referenceEdges+((double)actualEdges-counter.getAdded())/actualEdges)/2);
       
        uas_S.add(frame,matrix.BCR());
        //uas_S.drawInteractive(gr);
       }
       
        int count=0;
        for(LearnerGraph g:graphs)
          g.storage.writeGraphML(GlobalConfiguration.getConfiguration().getProperty(G_PROPERTIES.RESOURCES)+File.separator+name+"_"+frame+"_"+(count++)+".xml");
        System.out.println("=== "+graphs.size()+" ===");
        progress.next();
      }
      uas_S.drawPdf(gr);
    DrawGraphs.end();// the process will not terminate without it because R has its own internal thread
  }
View Full Code Here

    Set<Integer> allFrames = collectionOfTraces.get(UAVAllSeeds).tracesForUAVandFrame.get(UAVAllSeeds).keySet();

    /** The runner of computational threads. */
    int threadNumber = ExperimentRunner.getCpuNumber();
    ExecutorService executorService = Executors.newFixedThreadPool(threadNumber);
    ProgressIndicator progress = null;
    if (threadNumber <= 1)
      progress = new ProgressIndicator("UAS", allFrames.size());
   
    try
    {
      List<Future<?>> outcomes = new LinkedList<Future<?>>();
      for(final Integer frame:allFrames)
      {
        {// For all frames and all seeds
          Runnable interactiveRunner = new Runnable() {
 
            @Override
            public void run() {
              for(int choice:SelectionChoices)
              {
                ConfusionMatrix matrix = DiffExperiments.classify(wMethod, graphReference,
                    new RPNIBlueFringe(learnerConfig,choice).learn(collectionOfTraces.get(UAVAllSeeds).tracesForUAVandFrame.get(UAVAllSeeds).get(frame),true));
                uas_outcome.add(new Pair<Integer,String>(frame,"S"),matrix.BCR());
                uas_S.add(frame,matrix.BCR());
              }
            }
           
          };
          if (threadNumber > 1) outcomes.add(executorService.submit(interactiveRunner));else interactiveRunner.run();
        }
       
        for(final String seed:collectionOfTraces.keySet())
          if (!seed.equals(UAVAllSeeds))
          {// Just for all frames of the a single seed
            Runnable interactiveRunner = new Runnable() {

              @Override
              public void run() {
                TracesForSeed tracesForThisSeed = collectionOfTraces.get(seed);
               
                for(int choice:SelectionChoices)
                {
                  ConfusionMatrix matrix = DiffExperiments.classify(wMethod, graphReference,
                      new RPNIBlueFringe(learnerConfig,choice).learn(tracesForThisSeed.tracesForUAVandFrame.get(UAVAll).get(frame),true));
                  uas_outcome.add(new Pair<Integer,String>(frame,"A"),matrix.BCR());
                  uas_A.add(frame,matrix.BCR());
                }
              }
             
            };
            if (threadNumber > 1) outcomes.add(executorService.submit(interactiveRunner));else interactiveRunner.run();
          }
        for(final String UAV:collectionOfTraces.get(UAVAllSeeds).tracesForUAVandFrame.keySet())
          if (!UAV.equals(UAVAllSeeds) && !UAV.equals(UAVAll))
            for(final String seed:collectionOfTraces.keySet())
              if (!seed.equals(UAVAllSeeds))
              {
                Runnable interactiveRunner = new Runnable() {

                  @Override
                  public void run() {
                    for(int choice:SelectionChoices)
                    {
                      ConfusionMatrix matrix = DiffExperiments.classify(wMethod, graphReference,
                          new RPNIBlueFringe(learnerConfig,choice).learn(collectionOfTraces.get(seed).tracesForUAVandFrame.get(UAV).get(frame),true));
                      uas_outcome.add(new Pair<Integer,String>(frame,"U"),matrix.BCR());
                      uas_U.add(frame,matrix.BCR());
                    }
                  }
                 
                };
                if (threadNumber > 1) outcomes.add(executorService.submit(interactiveRunner));else interactiveRunner.run();
              }
       
        if (threadNumber <= 1)
        {/*
          uas_outcome.drawInteractive(gr);
          uas_A.drawInteractive(gr);
          uas_S.drawInteractive(gr);
          uas_U.drawInteractive(gr);
          */
          progress.next();
        }
      }
     
      for(int i=0;i<5;++i)
      {
        final int arg=i;
        Runnable interactiveRunner = new Runnable() {

          @Override
          public void run() {
            for(int choice:SelectionChoices)
            {
              Configuration tmpConf = learnerConfig.copy();tmpConf.setGeneralisationThreshold(arg);
              ConfusionMatrix matrix = DiffExperiments.classify(wMethod, graphReference,new RPNIBlueFringe(tmpConf,choice).learn(collectionOfTraces.get(UAVAllSeeds).tracesForUAVandFrame.get(UAVAllSeeds).get(maxFrameNumber),false));
              uas_threshold.add(arg, matrix.BCR());
            }
          }
         
        };
        if (threadNumber > 1)
          outcomes.add(executorService.submit(interactiveRunner));
        else
        {
          interactiveRunner.run();
          //uas_threshold.drawInteractive(gr);
        }
      }

      if (threadNumber > 1)
      {
        progress = new ProgressIndicator("running concurrent experiment",outcomes.size());
        for(Future<?> task:outcomes) { task.get();progress.next(); }// wait for termination of all tasks
      }
    }
    catch(Exception ex)
    {
      Helper.throwUnchecked("failed to run experiment", ex);
View Full Code Here

      {
        return name.startsWith("N_");
    }});
    Arrays.sort(files);
    int threads[]=new int[]{8};
    ProgressIndicator progress = new ProgressIndicator("eNDT:", (files.length+1)*threads.length);

    // N_1320.xml+N_502.xml v.s. N_2070.xml+N_2232.xml takes a long while.
    addFilesToCollection(new File(testFilePath+"N_1320.xml"),new File(testFilePath+"N_502.xml"),
        new File(testFilePath+"N_2070.xml"),new File(testFilePath+"N_2232.xml"),result,threads,progress);
    for(int fileNum = 0;fileNum < files.length;++fileNum)
View Full Code Here

        return name.startsWith("N_");
      }
    });
    Arrays.sort(files);
    int threads[]=new int[]{1,8};
    ProgressIndicator progress = new ProgressIndicator("e:", files.length*threads.length);
   
    for(int fileNum = 0;fileNum < files.length;++fileNum)
    {
      File
      fileA=files[fileNum],
      fileB=files[(fileNum+1)%files.length];
      boolean fallback = detectFallbackToInitialPair(fileA, null, fileB, null);
      Assert.assertFalse(fallback);// our test files are very small hence must fit in memory

      for(int threadNo:threads)
      {
        for(double ratio:new double[]{0.6,0.9})
          for(int pairs:new int[]{0,40})
            result.add(new Object[]{new Integer(threadNo), new Integer(pairs),ratio,fileA,fileB});

        // -1. should be floating-point number otherwise it is turned into Integer and our parametersToString fails to match the resulting list of values.
        result.add(new Object[]{new Integer(threadNo), new Integer(0),-1.,fileA,fileB});
       
        progress.next();
      }
    }
    return result;
  }
View Full Code Here

      int alphabet = states/2;
     
      MachineGenerator mg = new MachineGenerator(states, 40, states/10);
      int mutationsPerStage = (states/2) / 2;
      //System.out.print("\n"+states+": ");
      ProgressIndicator progress = new ProgressIndicator(""+states, mutationStages*experimentsPerMutationCategory);
      for(int mutationStage = 0;mutationStage<mutationStages;mutationStage++)
      {
        for(int experiment=0;experiment<experimentsPerMutationCategory;experiment++)
        {
          ExperimentResult outcome = new ExperimentResult();
          while(!outcome.experimentValid)
          {
            int mutations = mutationsPerStage * (mutationStage+1);
            LearnerGraphND origGraph = mg.nextMachine(alphabet, experiment,config);
            GraphMutator<List<CmpVertex>,LearnerGraphNDCachedData> mutator = new GraphMutator<List<CmpVertex>,LearnerGraphNDCachedData>(origGraph,r);
            mutator.mutate(mutations);
            LearnerGraphND origAfterRenaming = new LearnerGraphND(origGraph.config);
            Map<CmpVertex,CmpVertex> origToNew = copyStatesAndTransitions(origGraph,origAfterRenaming);
            LearnerGraphND mutated = (LearnerGraphND)mutator.getMutated();
            Set<Transition> appliedMutations = new HashSet<Transition>();
            for(Transition tr:mutator.getDiff())
            {
              CmpVertex renamedFrom = origToNew.get(tr.getFrom());if (renamedFrom == null) renamedFrom = tr.getFrom();
              CmpVertex renamedTo = origToNew.get(tr.getTo());if (renamedTo == null) renamedTo = tr.getTo();
              appliedMutations.add(new Transition(renamedFrom,renamedTo,tr.getLabel()));
            }
           
            final double perfectLowToHigh=0.7,perfectThreshold=0.5;
           
            // These experiments are only run for the maximal number of states
            if (graphComplexity == graphComplexityMax-1)
            {
              for(double k:new double[]{0,.2,.4,.6,.8,.95})
              {
                config.setAttenuationK(k);
                config.setGdKeyPairThreshold(0.5);
                config.setGdLowToHighRatio(perfectLowToHigh);
                config.setGdPropagateDet(false);// this is to ensure that if we removed a transition 0 from to a state and then added one from that state to a different one, det-propagation will not force the two very different states into a key-pair relation.
                linearDiff(origAfterRenaming,mutated, appliedMutations,outcome);
               
                gr_Diff_k.add(k, outcome.getValue(DOUBLE_V.OBTAINED_TO_EXPECTED));
               
              }

              for(double threshold:new double[]{0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95})
              {
                config.setGdKeyPairThreshold(threshold);
                config.setGdLowToHighRatio(perfectLowToHigh);
                config.setGdPropagateDet(false);// this is to ensure that if we removed a transition 0 from to a state and then added one from that state to a different one, det-propagation will not force the two very different states into a key-pair relation.
                linearDiff(origAfterRenaming,mutated, appliedMutations,outcome);
               
                gr_Diff_threshold.add(threshold, outcome.getValue(DOUBLE_V.OBTAINED_TO_EXPECTED));
              }

              for(double lowtohigh:new double[]{0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95})
              {
                config.setGdKeyPairThreshold(perfectThreshold);
                config.setGdLowToHighRatio(lowtohigh);
                config.setGdPropagateDet(false);// this is to ensure that if we removed a transition 0 from to a state and then added one from that state to a different one, det-propagation will not force the two very different states into a key-pair relation.
                linearDiff(origAfterRenaming,mutated, appliedMutations,outcome);
               
                gr_Diff_lowtohigh.add(lowtohigh, outcome.getValue(DOUBLE_V.OBTAINED_TO_EXPECTED));
              }
             
             
              for(int i=0;i<pairThreshold.length;++i)
                for(double ratio:lowToHigh)
                {
                  config.setGdKeyPairThreshold(pairThreshold[i]);
                  config.setGdLowToHighRatio(ratio);
                  config.setGdPropagateDet(false);// this is to ensure that if we removed a transition 0 from to a state and then added one from that state to a different one, det-propagation will not force the two very different states into a key-pair relation.
                  linearDiff(origAfterRenaming,mutated, appliedMutations,outcome);
                 
                  gr_Diff_thresholdslowhigh.add(new Pair<Double,Double>(ratio,pairThreshold[i]), outcome.getValue(DOUBLE_V.OBTAINED_TO_EXPECTED));
                }
            }
            config.setAttenuationK(0.5);
            config.setGdKeyPairThreshold(perfectThreshold);
            config.setGdLowToHighRatio(perfectLowToHigh);
            config.setGdPropagateDet(false);// this is to ensure that if we removed a transition 0 from to a state and then added one from that state to a different one, det-propagation will not force the two very different states into a key-pair relation.
            linearDiff(origAfterRenaming,mutated, appliedMutations,outcome);
           
            if (!skip)
            {
              LearnerGraph fromDet = null, toDet = null;
              try {
                fromDet = mergeAndDeterminize(origAfterRenaming);
                toDet = mergeAndDeterminize(mutated);
              } catch (IncompatibleStatesException e) {
                Helper.throwUnchecked("failed to build a deterministic graph from a nondet one", e);
              }
              languageDiff(fromDet,toDet,states, graphComplexity,outcome);
            }
            outcome.experimentValid = true;
            progress.next();
            gr_Diff_States.add(states, outcome.getValue(DOUBLE_V.OBTAINED_TO_EXPECTED));
            gr_W_States.add(states,outcome.getValue(DOUBLE_V.ACCURACY_W));
            Pair<Integer,Integer> mutations_states = new Pair<Integer,Integer>(mutationStage+1,states);
            Pair<Integer,Integer> states_mutations = new Pair<Integer,Integer>(states,mutationStage+1);
            gr_DiffGD_StatesLevel.add(mutations_states, outcome.getValue(DOUBLE_V.OBTAINED_TO_EXPECTED));
View Full Code Here

      for(int graphComplexity=0;graphComplexity < graphComplexityMax;graphComplexity++)
      {
        int states=initStates+graphComplexity*20;
        int alphabet = states/2;
        MachineGenerator mg = new MachineGenerator(states, 40, states/10);
        ProgressIndicator progress = new ProgressIndicator(""+states, experimentsPerCategory);
       
        for(int experiment=0;experiment<experimentsPerCategory;experiment++)
        {
          LearnerGraphND generatedFSM = mg.nextMachine(alphabet, experiment,config);
          if (generatedFSM.getInit() != generatedFSM.transitionMatrix.entrySet().iterator().next().getKey())
            throw new RuntimeException("first state is not the initial state");
         
          //Visualiser.updateFrame(origGraph, null);
          randomFSM = new FileWriter(GlobalConfiguration.getConfiguration().getProperty(G_PROPERTIES.RESOURCES)+File.separator+"randomFSM/fsm_"+states+"_"+experiment+".x_");
          for(Entry<CmpVertex,Map<Label,List<CmpVertex>>> entry:generatedFSM.transitionMatrix.entrySet())
            for(Entry<Label,List<CmpVertex>> targets:entry.getValue().entrySet())
              for(CmpVertex targetState:generatedFSM.getTargets(targets.getValue()))
              {
                randomFSM.write(entry.getKey().getStringId());randomFSM.write(' ');
                randomFSM.write(targetState.getStringId());randomFSM.write(' ');
                randomFSM.write(targets.getKey().toString());randomFSM.write('\n');
              }
          randomFSM.close();randomFSM = null;
          progress.next();
        }
      }
    }
    catch(Exception ex)
    {
View Full Code Here

TOP

Related Classes of statechum.ProgressIndicator

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.