/** Maps states to a function associating labels to a sum of probabilities from a Markov matrix. Such a sum is supposed to predict the likelyhood of a transition with this label from every state. */
Map<CmpVertex,Map<Label,UpdatablePairInteger>> state_outgoing_occurence=new HashMap<CmpVertex,Map<Label,UpdatablePairInteger>>();
/** Maps states to a function associating labels to a probability of a transition with the label of interest from a state of interest. Computed from {@link MarkovUniversalLearner#state_outgoing_occurence}. */
Map<CmpVertex,Map<Label,UpdatablePairDouble>> state_outgoing=new HashMap<CmpVertex,Map<Label,UpdatablePairDouble>>();
final Configuration shallowCopy = tentativeAutomaton.config.copy();shallowCopy.setLearnerCloneGraph(false);
Extension_Graph= new LearnerGraph(shallowCopy);
LearnerGraph.copyGraphs(tentativeAutomaton, Extension_Graph);
Set<Label> allElementsOfAlphabet = tentativeAutomaton.learnerCache.getAlphabet();
List<Label> pathToNewState=new LinkedList<Label>();
// mapping map to store all paths leave each state in different length