Examples of RunningAverage


Examples of org.apache.mahout.cf.taste.impl.common.RunningAverage

      while (it.hasNext()) {
        PreferenceArray prefs = dataModel.getPreferencesFromUser(it.nextLong());
        int size = prefs.length();
        for (int i = 0; i < size; i++) {
          long itemID = prefs.getItemID(i);
          RunningAverage average = itemAverages.get(itemID);
          if (average == null) {
            average = new FullRunningAverage();
            itemAverages.put(itemID, average);
          }
          average.addDatum(prefs.getValue(i));
        }
      }
    } finally {
      buildAveragesLock.writeLock().unlock();
    }
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.common.RunningAverage

      prefDelta = value;
    }
    super.setPreference(userID, itemID, value);
    try {
      buildAveragesLock.writeLock().lock();
      RunningAverage average = itemAverages.get(itemID);
      if (average == null) {
        RunningAverage newAverage = new FullRunningAverage();
        newAverage.addDatum(prefDelta);
        itemAverages.put(itemID, newAverage);
      } else {
        average.changeDatum(prefDelta);
      }
    } finally {
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.common.RunningAverage

    Float oldPref = dataModel.getPreferenceValue(userID, itemID);
    super.removePreference(userID, itemID);
    if (oldPref != null) {
      try {
        buildAveragesLock.writeLock().lock();
        RunningAverage average = itemAverages.get(itemID);
        if (average == null) {
          throw new IllegalStateException("No preferences exist for item ID: " + itemID);
        } else {
          average.removeDatum(oldPref);
        }
      } finally {
        buildAveragesLock.writeLock().unlock();
      }
    }
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.common.RunningAverage

    double totalPreference = 0.0;
    PreferenceArray prefs = getDataModel().getPreferencesFromUser(userID);
    RunningAverage[] averages = diffStorage.getDiffs(userID, itemID, prefs);
    int size = prefs.length();
    for (int i = 0; i < size; i++) {
      RunningAverage averageDiff = averages[i];
      if (averageDiff != null) {
        double averageDiffValue = averageDiff.getAverage();
        if (weighted) {
          double weight = averageDiff.getCount();
          if (stdDevWeighted) {
            double stdev = ((RunningAverageAndStdDev) averageDiff).getStandardDeviation();
            if (!Double.isNaN(stdev)) {
              weight /= 1.0 + stdev;
            }
            // If stdev is NaN, then it is because count is 1. Because we're weighting by count,
            // the weight is already relatively low. We effectively assume stdev is 0.0 here and
            // that is reasonable enough. Otherwise, dividing by NaN would yield a weight of NaN
            // and disqualify this pref entirely
            // (Thanks Daemmon)
          }
          totalPreference += weight * (prefs.getValue(i) + averageDiffValue);
          count += weight;
        } else {
          totalPreference += prefs.getValue(i) + averageDiffValue;
          count += 1.0;
        }
      }
    }
    if (count <= 0.0) {
      RunningAverage itemAverage = diffStorage.getAverageItemPref(itemID);
      return itemAverage == null ? Float.NaN : (float) itemAverage.getAverage();
    } else {
      return (float) (totalPreference / count);
    }
  }
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.common.RunningAverage

    Preconditions.checkArgument(at >= 1, "at must be at least 1");
    Preconditions.checkArgument(evaluationPercentage > 0.0 && evaluationPercentage <= 1.0,
      "Invalid evaluationPercentage: %s", evaluationPercentage);

    int numItems = dataModel.getNumItems();
    RunningAverage precision = new FullRunningAverage();
    RunningAverage recall = new FullRunningAverage();
    RunningAverage fallOut = new FullRunningAverage();
    LongPrimitiveIterator it = dataModel.getUserIDs();
    while (it.hasNext()) {
      long userID = it.nextLong();
      if (random.nextDouble() < evaluationPercentage) {
        long start = System.currentTimeMillis();
        FastIDSet relevantItemIDs = new FastIDSet(at);
        PreferenceArray prefs = dataModel.getPreferencesFromUser(userID);
        int size = prefs.length();
        if (size < 2 * at) {
          // Really not enough prefs to meaningfully evaluate this user
          continue;
        }

        // List some most-preferred items that would count as (most) "relevant" results
        double theRelevanceThreshold =
            Double.isNaN(relevanceThreshold) ? computeThreshold(prefs) : relevanceThreshold;
        prefs.sortByValueReversed();
        for (int i = 0; (i < size) && (relevantItemIDs.size() < at); i++) {
          if (prefs.getValue(i) >= theRelevanceThreshold) {
            relevantItemIDs.add(prefs.getItemID(i));
          }
        }
        int numRelevantItems = relevantItemIDs.size();
        if (numRelevantItems > 0) {
          FastByIDMap<PreferenceArray> trainingUsers = new FastByIDMap<PreferenceArray>(dataModel
              .getNumUsers());
          LongPrimitiveIterator it2 = dataModel.getUserIDs();
          while (it2.hasNext()) {
            processOtherUser(userID, relevantItemIDs, trainingUsers, it2
                .nextLong(), dataModel);
          }

          DataModel trainingModel = dataModelBuilder == null ? new GenericDataModel(trainingUsers)
              : dataModelBuilder.buildDataModel(trainingUsers);
          Recommender recommender = recommenderBuilder.buildRecommender(trainingModel);

          try {
            trainingModel.getPreferencesFromUser(userID);
          } catch (NoSuchUserException nsee) {
            continue; // Oops we excluded all prefs for the user -- just move on
          }

          int intersectionSize = 0;
          List<RecommendedItem> recommendedItems = recommender.recommend(userID, at, rescorer);
          for (RecommendedItem recommendedItem : recommendedItems) {
            if (relevantItemIDs.contains(recommendedItem.getItemID())) {
              intersectionSize++;
            }
          }
          int numRecommendedItems = recommendedItems.size();
          if (numRecommendedItems > 0) {
            precision.addDatum((double) intersectionSize / (double) numRecommendedItems);
          }
          recall.addDatum((double) intersectionSize / (double) numRelevantItems);
          if (numRelevantItems < size) {
            fallOut.addDatum((double) (numRecommendedItems - intersectionSize)
                             / (double) (numItems - numRelevantItems));
          }

          long end = System.currentTimeMillis();
          GenericRecommenderIRStatsEvaluator.log.info("Evaluated with user {} in {}ms", userID, end - start);
          log.info("Precision/recall/fall-out: {} / {} / {}",
            new Object[] {precision.getAverage(), recall.getAverage(), fallOut.getAverage()});
        }
      }
    }

    return new IRStatisticsImpl(precision.getAverage(), recall.getAverage(), fallOut.getAverage());
  }
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.common.RunningAverage

  }
 
  private float doEstimatePreference(long userID, long itemID) {
    buildAveragesLock.readLock().lock();
    try {
      RunningAverage itemAverage = itemAverages.get(itemID);
      if (itemAverage == null) {
        return Float.NaN;
      }
      RunningAverage userAverage = userAverages.get(userID);
      if (userAverage == null) {
        return Float.NaN;
      }
      double userDiff = userAverage.getAverage() - overallAveragePrefValue.getAverage();
      return (float) (itemAverage.getAverage() + userDiff);
    } finally {
      buildAveragesLock.readLock().unlock();
    }
  }
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.common.RunningAverage

      buildAveragesLock.writeLock().unlock();
    }
  }
 
  private static void addDatumAndCreateIfNeeded(long itemID, float value, FastByIDMap<RunningAverage> averages) {
    RunningAverage itemAverage = averages.get(itemID);
    if (itemAverage == null) {
      itemAverage = new FullRunningAverage();
      averages.put(itemID, itemAverage);
    }
    itemAverage.addDatum(value);
  }
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.common.RunningAverage

      prefDelta = value;
    }
    super.setPreference(userID, itemID, value);
    try {
      buildAveragesLock.writeLock().lock();
      RunningAverage itemAverage = itemAverages.get(itemID);
      if (itemAverage == null) {
        RunningAverage newItemAverage = new FullRunningAverage();
        newItemAverage.addDatum(prefDelta);
        itemAverages.put(itemID, newItemAverage);
      } else {
        itemAverage.changeDatum(prefDelta);
      }
      RunningAverage userAverage = userAverages.get(userID);
      if (userAverage == null) {
        RunningAverage newUserAveragae = new FullRunningAverage();
        newUserAveragae.addDatum(prefDelta);
        userAverages.put(userID, newUserAveragae);
      } else {
        userAverage.changeDatum(prefDelta);
      }
      overallAveragePrefValue.changeDatum(prefDelta);
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.common.RunningAverage

    Float oldPref = dataModel.getPreferenceValue(userID, itemID);
    super.removePreference(userID, itemID);
    if (oldPref != null) {
      try {
        buildAveragesLock.writeLock().lock();
        RunningAverage itemAverage = itemAverages.get(itemID);
        if (itemAverage == null) {
          throw new IllegalStateException("No preferences exist for item ID: " + itemID);
        }
        itemAverage.removeDatum(oldPref);
        RunningAverage userAverage = userAverages.get(userID);
        if (userAverage == null) {
          throw new IllegalStateException("No preferences exist for user ID: " + userID);
        }
        userAverage.removeDatum(oldPref);
        overallAveragePrefValue.removeDatum(oldPref);
      } finally {
        buildAveragesLock.writeLock().unlock();
      }
    }
View Full Code Here

Examples of org.apache.mahout.cf.taste.impl.common.RunningAverage

      buildAverageDiffsLock.readLock().lock();
      level2Map = averageDiffs.get(itemID1);
    } finally {
      buildAverageDiffsLock.readLock().unlock();
    }
    RunningAverage average = null;
    if (level2Map != null) {
      average = level2Map.get(itemID2);
    }
    if (inverted) {
      if (average == null) {
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.