Examples of RandomPathGenerator


Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator

    Set<Label> origAlphabet = cvsGraph.pathroutines.computeAlphabet();
    assert origAlphabet.equals(markov.pathroutines.computeAlphabet());
    assert origAlphabet.equals(markovD.pathroutines.computeAlphabet());
    assert origAlphabet.equals(edsm.pathroutines.computeAlphabet());
    final RandomPathGenerator generator = new RandomPathGenerator(cvsGraph,new Random(0),5,null);
    final int posOrNegPerChunk = 50;
    generator.generateRandomPosNeg(posOrNegPerChunk*2,1);
    Collection<List<Label>> sequences = cvsGraph.wmethod.getFullTestSet(1);//generator.getAllSequences(0).getData(PTASequenceEngine.truePred);

    PTASequenceEngine walkEngine = new PTA_FSMStructure(cvsGraph,null);
    SequenceSet ptaWalk = walkEngine.new SequenceSet();ptaWalk.setIdentity();
    ptaWalk = ptaWalk.cross(sequences);
View Full Code Here

Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator

    protected void buildSets()
    {
      loadGraph();
      int size = graph.pathroutines.getGraph().getEdges().size()*4;// FIXME: this one ignores parallel edges
        RandomPathGenerator rpg = new RandomPathGenerator(graph, new Random(100),3,null);// the seed for Random should be the same for each file
      rpg.generatePosNeg(size, experiment.getStageNumber());
      pta = rpg.getAllSequences(percent);
    }
View Full Code Here

Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator

    /** This method is executed on an executor thread. */
    @Override
    public void runTheExperiment()
    {
      int sampleSize = (graph.getStateNumber()*4);
      RandomPathGenerator rpg = new RandomPathGenerator(graph, new Random(100),5,null);// the seed for Random should be the same for each file
      rpg.generateRandomPosNeg(sampleSize, 2)
      //Collection<List<String>> tests = graph.wmethod.getFullTestSet(1);
      config.setDebugMode(true);
      config.setAskQuestions(true);
      config.setSpeculativeQuestionAsking(true);
      config.setMinCertaintyThreshold(2);
      //config.setAskQuestions(false);
      //config.setKlimit(2);
      //config.setLearnerScoreMode(Configuration.ScoreMode.KTAILS);
      config.setLearnerScoreMode(Configuration.ScoreMode.CONVENTIONAL);
      LearnerEvaluationConfiguration evaluationConfiguration = new LearnerEvaluationConfiguration(null,null,config,null,null);
      evaluationConfiguration.setLabelConverter(experiment.getLabelConverter());
      Learner l = new AccuracyTrackerDecorator(new RPNIUniversalLearner(null,evaluationConfiguration)
      {
        @Override
        public Pair<Integer,String> CheckWithEndUser(
            @SuppressWarnings("unused"LearnerGraph model,
            List<Label> question, @SuppressWarnings("unused") int valueForNoRestart,
            @SuppressWarnings("unused") List<Boolean> acceptedElements,
            @SuppressWarnings("unused") PairScore pairBeingMerged,
            @SuppressWarnings("unused") final Object [] moreOptions)
        {
          questionNumber.addAndGet(1);
          return new Pair<Integer,String>(graph.paths.tracePathPrefixClosed(question),null);
        }
      }
      , graph);
      sMinus = rpg.getAllSequencesPercentageInterval(1);

      learn(l,sMinus);
      result = result + l.getResult();
    }
View Full Code Here

Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator

    Set<Label> origAlphabet = cvsGraph.pathroutines.computeAlphabet();
    assert origAlphabet.equals(markov.pathroutines.computeAlphabet());
    assert origAlphabet.equals(markovD.pathroutines.computeAlphabet());
    assert origAlphabet.equals(edsm.pathroutines.computeAlphabet());
    final RandomPathGenerator generator = new RandomPathGenerator(cvsGraph,new Random(0),5,null);
    final int posOrNegPerChunk = 50;
    generator.generateRandomPosNeg(posOrNegPerChunk*2,1);
    Collection<List<Label>> sequences = cvsGraph.wmethod.getFullTestSet(1);//generator.getAllSequences(0).getData(PTASequenceEngine.truePred);

    PTASequenceEngine walkEngine = new PTA_FSMStructure(cvsGraph,null);
    SequenceSet ptaWalk = walkEngine.new SequenceSet();ptaWalk.setIdentity();
    ptaWalk = ptaWalk.cross(sequences);
View Full Code Here

Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator

   {
     for(CmpVertex vert:referenceGraph.transitionMatrix.keySet())
       if (!vert.isAccept())
         throw new IllegalArgumentException("test set generation should not be attempted on an automaton with reject-states");
     assert numberOfSeq > 0 && seqLength > 0;
    RandomPathGenerator pathGen = new RandomPathGenerator(referenceGraph,new Random(0),seqLength,referenceGraph.getInit());
    pathGen.generateRandomPosNeg(numberOfSeq, 1, false, null, true,true,null,null);
    return  pathGen.getAllSequences(0).getData(PTASequenceEngine.truePred);
     /*
    Collection<List<Label>> evaluationTestSet = referenceGraph.wmethod.getFullTestSet(1);
   
    RandomPathGenerator pathGen = new RandomPathGenerator(referenceGraph,new Random(0),5,referenceGraph.getInit());
    int wPos=0;
View Full Code Here

Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator

      final Collection<List<Label>> testSet = null;//PaperUAS.computeEvaluationSet(referenceGraph,states*3,states*alphabet);
     
      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        // test sequences will be distributed around
        final int pathLength = generator.getPathLength();
        // The total number of elements in test sequences (alphabet*states*traceQuantity) will be distributed around (random(pathLength)+1). The total size of PTA is a product of these two.
        // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
        // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
        final int tracesToGenerate = makeEven(states*traceQuantity);
        final Random rnd = new Random(seed*31+attempt);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (rnd.nextInt(pathLength)+1)*lengthMultiplier;
            }
   
            @Override
            public int getPrefixLength(int len) {
              return len;
            }
          });
        /*
        for(List<Label> seq:referenceGraph.wmethod.computeNewTestSet(1))
        {
          pta.paths.augmentPTA(seq, referenceGraph.getVertex(seq) != null, false, null);
        }*/
        //pta.paths.augmentPTA(referenceGraph.wmethod.computeNewTestSet(referenceGraph.getInit(),1));// this one will not set any states as rejects because it uses shouldbereturned
        //referenceGraph.pathroutines.completeGraph(referenceGraph.nextID(false));
        if (onlyUsePositives)
          pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
            @Override
            public boolean shouldBeReturned(Object name) {
              return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
            }
          }));
        else
          pta.paths.augmentPTA(generator.getAllSequences(0));// the PTA will have very few reject-states because we are generating few sequences and hence there will be few negative sequences.
          // In order to approximate the behaviour of our case study, we need to compute which pairs are not allowed from a reference graph and use those as if-then automata to start the inference.
         
        //pta.paths.augmentPTA(referenceGraph.wmethod.computeNewTestSet(referenceGraph.getInit(),1));
       
        pta.clearColours();
View Full Code Here

Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator

    /** This method is executed on an executor thread. */
    @Override
    public void runTheExperiment()
    {
      int size = 4*graph.getStateNumber();
      RandomPathGenerator rpg = new RandomPathGenerator(graph, new Random(100),5);// the seed for Random should be the same for each file
      int percentPerChunk = 10;
      int nrPerChunk = size/(100/percentPerChunk);nrPerChunk+=nrPerChunk % 2;// make the number even
      rpg.generatePosNeg(2*nrPerChunk , 100/percentPerChunk);// 2* reflects the fact that nrPerChunk denotes the number of elements in both chunks (positive and negative) combined. 
      RPNILearner learner = new RPNIUniversalLearner(null,new LearnerEvaluationConfiguration(null,null,config,null,null))
      {
        @Override
        public Pair<Integer,String> CheckWithEndUser(
            @SuppressWarnings("unused"LearnerGraph model,
            List<String> question, @SuppressWarnings("unused") int valueForNoRestart,
            @SuppressWarnings("unused") final Object [] moreOptions)
        {
          questionNumber.addAndGet(1);
          return new Pair<Integer,String>(graph.paths.tracePath(question),null);
        }
      };
      QuestionAndRestartCounter l = new QuestionAndRestartCounter(learner);
      sPlus = rpg.getExtraSequences(percent/10-1);sMinus = rpg.getAllSequences(percent/10-1);

      LearnerGraph learnt = learn(l,sMinus);
      PTA_computePrecisionRecall precRec = new PTA_computePrecisionRecall(learnt);
      PTASequenceEngine engine = new PTA_FSMStructure(graph);
      PosNegPrecisionRecall ptaPR = precRec.crossWith(sMinus);
View Full Code Here

Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator

    /** This method is executed on an executor thread. */
    @Override
    public void runTheExperiment()
    {
      int sampleSize = (graph.getStateNumber()*4);
      RandomPathGenerator rpg = new RandomPathGenerator(graph, new Random(100),5,null);// the seed for Random should be the same for each file
      rpg.generateRandomPosNeg(sampleSize, 2)
      //Collection<List<String>> tests = graph.wmethod.getFullTestSet(1);
      config.setDebugMode(true);
      config.setAskQuestions(true);
      config.setSpeculativeQuestionAsking(true);
      config.setMinCertaintyThreshold(2);
      //config.setAskQuestions(false);
      //config.setKlimit(2);
      //config.setLearnerScoreMode(Configuration.ScoreMode.KTAILS);
      config.setLearnerScoreMode(Configuration.ScoreMode.CONVENTIONAL);
      Learner l = new AccuracyTrackerDecorator(new RPNIUniversalLearner(null,new LearnerEvaluationConfiguration(null,null,config,null,null))
      {
        @Override
        public Pair<Integer,String> CheckWithEndUser(
            @SuppressWarnings("unused"LearnerGraph model,
            List<String> question, @SuppressWarnings("unused") int valueForNoRestart,
            @SuppressWarnings("unused") List<Boolean> acceptedElements,
            @SuppressWarnings("unused") final Object [] moreOptions)
        {
          questionNumber.addAndGet(1);
          return new Pair<Integer,String>(graph.paths.tracePathPrefixClosed(question),null);
        }
      }
      , graph);
      sMinus = rpg.getAllSequencesPercentageInterval(1);

      learn(l,sMinus);
      result = result + l.getResult();
    }
View Full Code Here

Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator

    /** This method is executed on an executor thread. */
    @Override
    public void runTheExperiment()
    {
      int size = 2*graph.pathroutines.countEdges();
      RandomPathGenerator rpg = new RandomPathGenerator(graph, new Random(100),5,null);// the seed for Random should be the same for each file
      int percentPerChunk = 10;
      int nrPerChunk = size/(100/percentPerChunk);nrPerChunk+=nrPerChunk % 2;// make the number even
      rpg.generatePosNeg(2*nrPerChunk , 100/percentPerChunk);// 2* reflects the fact that nrPerChunk denotes the number of elements in both chunks (positive and negative) combined.  */
      RPNILearner learner = new RPNIUniversalLearner(null,new LearnerEvaluationConfiguration(null,null,config,null,null))
      {
        @Override
        public Pair<Integer,String> CheckWithEndUser(
            @SuppressWarnings("unused"LearnerGraph model,
            List<String> question, @SuppressWarnings("unused") int valueForNoRestart,
            @SuppressWarnings("unused") List<Boolean> acceptedElements,
            @SuppressWarnings("unused") final Object [] moreOptions)
        {
          questionNumber.addAndGet(1);
          return new Pair<Integer,String>(graph.paths.tracePathPrefixClosed(question),null);
        }
      };
      QuestionAndRestartCounter l = new QuestionAndRestartCounter(learner);
      sPlus = rpg.getExtraSequences(percent/10-1);sMinus = rpg.getAllSequences(percent/10-1);

      LearnerGraph learnt = learn(l,sMinus);
      PTA_computePrecisionRecall precRec = new PTA_computePrecisionRecall(learnt);
      PTASequenceEngine engine = new PTA_FSMStructure(graph,null);
      precRec.crossWith(sMinus);PosNegPrecisionRecall ptaPR = precRec.getPosNegPrecisionRecallNum();
View Full Code Here

Examples of statechum.analysis.learning.rpnicore.RandomPathGenerator

      final Collection<List<Label>> testSet = PaperUAS.computeEvaluationSet(referenceGraph,states*3,states*alphabet);
     
      for(int attempt=0;attempt<2;++attempt)
      {// try learning the same machine a few times
        LearnerGraph pta = new LearnerGraph(config);
        RandomPathGenerator generator = new RandomPathGenerator(referenceGraph,new Random(attempt),5,null);
        // test sequences will be distributed around
        final int pathLength = generator.getPathLength();
        // The total number of elements in test sequences (alphabet*states*traceQuantity) will be distributed around (random(pathLength)+1). The total size of PTA is a product of these two.
        // For the purpose of generating long traces, we construct as many traces as there are states but these traces have to be rather long,
        // that is, length of traces will be (random(pathLength)+1)*sequencesPerChunk/states and the number of traces generated will be the same as the number of states.
        final int tracesToGenerate = makeEven(traceQuantity);
        final Random rnd = new Random(seed*31+attempt);
        generator.generateRandomPosNeg(tracesToGenerate, 1, false, new RandomLengthGenerator() {
                   
            @Override
            public int getLength() {
              return (rnd.nextInt(pathLength)+1)*lengthMultiplier;
            }
   
            @Override
            public int getPrefixLength(int len) {
              return len;
            }
          });

        if (onlyUsePositives)
          pta.paths.augmentPTA(generator.getAllSequences(0).filter(new FilterPredicate() {
            @Override
            public boolean shouldBeReturned(Object name) {
              return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
            }
          }));
        else
          pta.paths.augmentPTA(generator.getAllSequences(0));// the PTA will have very few reject-states because we are generating few sequences and hence there will be few negative sequences.
          // In order to approximate the behaviour of our case study, we need to compute which pairs are not allowed from a reference graph and use those as if-then automata to start the inference.
        //pta.paths.augmentPTA(referenceGraph.wmethod.computeNewTestSet(referenceGraph.getInit(),1));
   
        List<List<Label>> sPlus = generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return ((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
        List<List<Label>> sMinus= generator.getAllSequences(0).getData(new FilterPredicate() {
          @Override
          public boolean shouldBeReturned(Object name) {
            return !((statechum.analysis.learning.rpnicore.RandomPathGenerator.StateName)name).accept;
          }
        });
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.