Examples of PointVectorValuePair


Examples of org.apache.commons.math3.optim.PointVectorValuePair

        final RealMatrix weightMatrixSqrt = getWeightSquareRoot();

        // Evaluate the function at the starting point and calculate its norm.
        double[] currentObjective = computeObjectiveValue(currentPoint);
        double[] currentResiduals = computeResiduals(currentObjective);
        PointVectorValuePair current = new PointVectorValuePair(currentPoint, currentObjective);
        double currentCost = computeCost(currentResiduals);

        // Outer loop.
        lmPar = 0;
        boolean firstIteration = true;
        final ConvergenceChecker<PointVectorValuePair> checker = getConvergenceChecker();
        while (true) {
            incrementIterationCount();

            final PointVectorValuePair previous = current;

            // QR decomposition of the jacobian matrix
            qrDecomposition(computeWeightedJacobian(currentPoint));

            weightedResidual = weightMatrixSqrt.operate(currentResiduals);
            for (int i = 0; i < nR; i++) {
                qtf[i] = weightedResidual[i];
            }

            // compute Qt.res
            qTy(qtf);

            // now we don't need Q anymore,
            // so let jacobian contain the R matrix with its diagonal elements
            for (int k = 0; k < solvedCols; ++k) {
                int pk = permutation[k];
                weightedJacobian[k][pk] = diagR[pk];
            }

            if (firstIteration) {
                // scale the point according to the norms of the columns
                // of the initial jacobian
                xNorm = 0;
                for (int k = 0; k < nC; ++k) {
                    double dk = jacNorm[k];
                    if (dk == 0) {
                        dk = 1.0;
                    }
                    double xk = dk * currentPoint[k];
                    xNorm  += xk * xk;
                    diag[k] = dk;
                }
                xNorm = FastMath.sqrt(xNorm);

                // initialize the step bound delta
                delta = (xNorm == 0) ? initialStepBoundFactor : (initialStepBoundFactor * xNorm);
            }

            // check orthogonality between function vector and jacobian columns
            double maxCosine = 0;
            if (currentCost != 0) {
                for (int j = 0; j < solvedCols; ++j) {
                    int    pj = permutation[j];
                    double s  = jacNorm[pj];
                    if (s != 0) {
                        double sum = 0;
                        for (int i = 0; i <= j; ++i) {
                            sum += weightedJacobian[i][pj] * qtf[i];
                        }
                        maxCosine = FastMath.max(maxCosine, FastMath.abs(sum) / (s * currentCost));
                    }
                }
            }
            if (maxCosine <= orthoTolerance) {
                // Convergence has been reached.
                setCost(currentCost);
                return current;
            }

            // rescale if necessary
            for (int j = 0; j < nC; ++j) {
                diag[j] = FastMath.max(diag[j], jacNorm[j]);
            }

            // Inner loop.
            for (double ratio = 0; ratio < 1.0e-4;) {

                // save the state
                for (int j = 0; j < solvedCols; ++j) {
                    int pj = permutation[j];
                    oldX[pj] = currentPoint[pj];
                }
                final double previousCost = currentCost;
                double[] tmpVec = weightedResidual;
                weightedResidual = oldRes;
                oldRes    = tmpVec;
                tmpVec    = currentObjective;
                currentObjective = oldObj;
                oldObj    = tmpVec;

                // determine the Levenberg-Marquardt parameter
                determineLMParameter(qtf, delta, diag, work1, work2, work3);

                // compute the new point and the norm of the evolution direction
                double lmNorm = 0;
                for (int j = 0; j < solvedCols; ++j) {
                    int pj = permutation[j];
                    lmDir[pj] = -lmDir[pj];
                    currentPoint[pj] = oldX[pj] + lmDir[pj];
                    double s = diag[pj] * lmDir[pj];
                    lmNorm  += s * s;
                }
                lmNorm = FastMath.sqrt(lmNorm);
                // on the first iteration, adjust the initial step bound.
                if (firstIteration) {
                    delta = FastMath.min(delta, lmNorm);
                }

                // Evaluate the function at x + p and calculate its norm.
                currentObjective = computeObjectiveValue(currentPoint);
                currentResiduals = computeResiduals(currentObjective);
                current = new PointVectorValuePair(currentPoint, currentObjective);
                currentCost = computeCost(currentResiduals);

                // compute the scaled actual reduction
                double actRed = -1.0;
                if (0.1 * currentCost < previousCost) {
                    double r = currentCost / previousCost;
                    actRed = 1.0 - r * r;
                }

                // compute the scaled predicted reduction
                // and the scaled directional derivative
                for (int j = 0; j < solvedCols; ++j) {
                    int pj = permutation[j];
                    double dirJ = lmDir[pj];
                    work1[j] = 0;
                    for (int i = 0; i <= j; ++i) {
                        work1[i] += weightedJacobian[i][pj] * dirJ;
                    }
                }
                double coeff1 = 0;
                for (int j = 0; j < solvedCols; ++j) {
                    coeff1 += work1[j] * work1[j];
                }
                double pc2 = previousCost * previousCost;
                coeff1 /= pc2;
                double coeff2 = lmPar * lmNorm * lmNorm / pc2;
                double preRed = coeff1 + 2 * coeff2;
                double dirDer = -(coeff1 + coeff2);

                // ratio of the actual to the predicted reduction
                ratio = (preRed == 0) ? 0 : (actRed / preRed);

                // update the step bound
                if (ratio <= 0.25) {
                    double tmp =
                        (actRed < 0) ? (0.5 * dirDer / (dirDer + 0.5 * actRed)) : 0.5;
                        if ((0.1 * currentCost >= previousCost) || (tmp < 0.1)) {
                            tmp = 0.1;
                        }
                        delta = tmp * FastMath.min(delta, 10.0 * lmNorm);
                        lmPar /= tmp;
                } else if ((lmPar == 0) || (ratio >= 0.75)) {
                    delta = 2 * lmNorm;
                    lmPar *= 0.5;
                }

                // test for successful iteration.
                if (ratio >= 1.0e-4) {
                    // successful iteration, update the norm
                    firstIteration = false;
                    xNorm = 0;
                    for (int k = 0; k < nC; ++k) {
                        double xK = diag[k] * currentPoint[k];
                        xNorm += xK * xK;
                    }
                    xNorm = FastMath.sqrt(xNorm);

                    // tests for convergence.
                    if (checker != null && checker.converged(getIterations(), previous, current)) {
                        setCost(currentCost);
                        return current;
                    }
                } else {
                    // failed iteration, reset the previous values
                    currentCost = previousCost;
                    for (int j = 0; j < solvedCols; ++j) {
                        int pj = permutation[j];
                        currentPoint[pj] = oldX[pj];
                    }
                    tmpVec    = weightedResidual;
                    weightedResidual = oldRes;
                    oldRes    = tmpVec;
                    tmpVec    = currentObjective;
                    currentObjective = oldObj;
                    oldObj    = tmpVec;
                    // Reset "current" to previous values.
                    current = new PointVectorValuePair(currentPoint, currentObjective);
                }

                // Default convergence criteria.
                if ((FastMath.abs(actRed) <= costRelativeTolerance &&
                     preRed <= costRelativeTolerance &&
View Full Code Here

Examples of org.apache.commons.math3.optim.PointVectorValuePair

        // Input to the optimizer: the model and its Jacobian.
        final TheoreticalValuesFunction model = new TheoreticalValuesFunction(f);

        // Perform the fit.
        final PointVectorValuePair optimum
            = optimizer.optimize(new MaxEval(maxEval),
                                 model.getModelFunction(),
                                 model.getModelFunctionJacobian(),
                                 new Target(target),
                                 new Weight(weights),
                                 new InitialGuess(initialGuess));
        // Extract the coefficients.
        return optimum.getPointRef();
    }
View Full Code Here

Examples of org.apache.commons.math3.optim.PointVectorValuePair

            public boolean converged(final int iteration,
                                     final Evaluation previous,
                                     final Evaluation current) {
                return checker.converged(
                        iteration,
                        new PointVectorValuePair(
                                previous.getPoint().toArray(),
                                previous.getResiduals().toArray(),
                                false),
                        new PointVectorValuePair(
                                current.getPoint().toArray(),
                                current.getResiduals().toArray(),
                                false)
                );
            }
View Full Code Here

Examples of org.apache.commons.math3.optim.PointVectorValuePair

        final double[] currentPoint = getStartPoint();
        final int nC = currentPoint.length;

        // iterate until convergence is reached
        PointVectorValuePair current = null;
        for (boolean converged = false; !converged;) {
            incrementIterationCount();

            // evaluate the objective function and its jacobian
            PointVectorValuePair previous = current;
            // Value of the objective function at "currentPoint".
            final double[] currentObjective = computeObjectiveValue(currentPoint);
            final double[] currentResiduals = computeResiduals(currentObjective);
            final RealMatrix weightedJacobian = computeWeightedJacobian(currentPoint);
            current = new PointVectorValuePair(currentPoint, currentObjective);

            // build the linear problem
            final double[]   b = new double[nC];
            final double[][] a = new double[nC][nC];
            for (int i = 0; i < nR; ++i) {
View Full Code Here

Examples of org.apache.commons.math3.optim.PointVectorValuePair

        LevenbergMarquardtOptimizer optimizer
            = new LevenbergMarquardtOptimizer(FastMath.sqrt(2.22044604926e-16),
                                              FastMath.sqrt(2.22044604926e-16),
                                              2.22044604926e-16);
        try {
            PointVectorValuePair optimum
                = optimizer.optimize(new MaxEval(400 * (function.getN() + 1)),
                                     function.getModelFunction(),
                                     function.getModelFunctionJacobian(),
                                     new Target(function.getTarget()),
                                     new Weight(function.getWeight()),
View Full Code Here

Examples of org.apache.commons.math3.optim.PointVectorValuePair

            @Override
            protected PointVectorValuePair doOptimize() {
                final double[] params = getStartPoint();
                final double[] res = computeResiduals(computeObjectiveValue(params));
                setCost(computeCost(res));
                return new PointVectorValuePair(params, null);
            }
        };
    }
View Full Code Here

Examples of org.apache.commons.math3.optim.PointVectorValuePair

        Arrays.fill(w, 1);

        StatisticalReferenceDataset.LeastSquaresProblem problem
            = dataset.getLeastSquaresProblem();

        final PointVectorValuePair optimum
            = optimizer.optimize(new MaxEval(1),
                                 problem.getModelFunction(),
                                 problem.getModelFunctionJacobian(),
                                 new Target(y),
                                 new Weight(w),
                                 new InitialGuess(a));

        final double[] sig = optimizer.computeSigma(optimum.getPoint(), 1e-14);

        final int dof = y.length - a.length;
        final double[] expected = dataset.getParametersStandardDeviations();
        for (int i = 0; i < sig.length; i++) {
            final double actual = FastMath.sqrt(optimizer.getChiSquare() / dof) * sig[i];
 
View Full Code Here

Examples of org.apache.commons.math3.optim.PointVectorValuePair

            // Direct solution (using simple regression).
            final double[] regress = problem.solve();

            // Estimation of the standard deviation (diagonal elements of the
            // covariance matrix).
            final PointVectorValuePair optimum
                = optim.optimize(new MaxEval(Integer.MAX_VALUE),
                                 problem.getModelFunction(),
                                 problem.getModelFunctionJacobian(),
                                 new Target(problem.target()),
                                 new Weight(problem.weight()),
                                 new InitialGuess(init));
            final double[] sigma = optim.computeSigma(optimum.getPoint(), 1e-14);

            // Accumulate statistics.
            for (int i = 0; i < numParams; i++) {
                paramsFoundByDirectSolution[i].addValue(regress[i]);
                sigmaEstimate[i].addValue(sigma[i]);
View Full Code Here

Examples of org.apache.commons.math3.optim.PointVectorValuePair

    @Test
    public void testTrivial() {
        LinearProblem problem
            = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 });
        AbstractLeastSquaresOptimizer optimizer = createOptimizer();
        PointVectorValuePair optimum =
            optimizer.optimize(new MaxEval(100),
                               problem.getModelFunction(),
                               problem.getModelFunctionJacobian(),
                               problem.getTarget(),
                               new Weight(new double[] { 1 }),
                               new InitialGuess(new double[] { 0 }));
        Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
        Assert.assertEquals(1.5, optimum.getPoint()[0], 1e-10);
        Assert.assertEquals(3.0, optimum.getValue()[0], 1e-10);
    }
View Full Code Here

Examples of org.apache.commons.math3.optim.PointVectorValuePair

        LinearProblem problem
            = new LinearProblem(new double[][] { { 1, -1 }, { 0, 2 }, { 1, -2 } },
                                new double[] { 4, 6, 1 });

        AbstractLeastSquaresOptimizer optimizer = createOptimizer();
        PointVectorValuePair optimum =
            optimizer.optimize(new MaxEval(100),
                               problem.getModelFunction(),
                               problem.getModelFunctionJacobian(),
                               problem.getTarget(),
                               new Weight(new double[] { 1, 1, 1 }),
                               new InitialGuess(new double[] { 0, 0 }));
        Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
        Assert.assertEquals(7, optimum.getPoint()[0], 1e-10);
        Assert.assertEquals(3, optimum.getPoint()[1], 1e-10);
        Assert.assertEquals(4, optimum.getValue()[0], 1e-10);
        Assert.assertEquals(6, optimum.getValue()[1], 1e-10);
        Assert.assertEquals(1, optimum.getValue()[2], 1e-10);
    }
View Full Code Here
TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.