Package org.fnlp.nlp.pipe

Examples of org.fnlp.nlp.pipe.SeriesPipes


    //将字符特征转换成字典索引; 
    Pipe sparsepp=new StringArray2SV(af);
    //将目标值对应的索引号作为类别
    Pipe targetpp = new Target2Label(af.DefaultLabelAlphabet())
    //建立pipe组合
    SeriesPipes pp = new SeriesPipes(new Pipe[]{removepp,segpp,s2spp,targetpp,sparsepp});

    /**
     * Knn
     */
    System.out.print("\nKnn\n");
    System.out.print("\nReading data......\n");
    long time_mark=System.currentTimeMillis();
    InstanceSet instset = new InstanceSet(pp,af)
    Reader reader = new MyDocumentReader(trainDataPath,"gbk");
    instset.loadThruStagePipes(reader);
    System.out.print("..Reading data complete "+(System.currentTimeMillis()-time_mark)+"(ms)\n");
   
    //将数据集分为训练是和测试集
    System.out.print("Sspliting....");
    float percent = 0.9f;
    InstanceSet[] splitsets = instset.split(percent);
   
    InstanceSet trainset = splitsets[0];
    InstanceSet testset = splitsets[1]
    System.out.print("..Spliting complete!\n");
   
    System.out.print("Training Knn...\n");
    time_mark=System.currentTimeMillis();
    SparseVectorSimilarity sim=new SparseVectorSimilarity();
    pp.removeTargetPipe();
    KNNClassifier knn=new KNNClassifier(trainset, pp, sim, af, 9)
    af.setStopIncrement(true)
   
    ItemFrequency tf=new ItemFrequency(trainset);
    FeatureSelect fs=new FeatureSelect(tf.getFeatureSize());
View Full Code Here


    Pipe indexpp = new StringArray2IndexArray(af);
    //将目标值对应的索引号作为类别
    Pipe targetpp = new Target2Label(af.DefaultLabelAlphabet());   
   
    //建立pipe组合
    SeriesPipes pp = new SeriesPipes(new Pipe[]{ngrampp,targetpp,indexpp});
   
    InstanceSet instset = new InstanceSet(pp,af);
   
    //用不同的Reader读取相应格式的文件
    Reader reader = new FileReader(trainDataPath,"UTF-8",".data");
   
    //读入数据,并进行数据处理
    instset.loadThruStagePipes(reader);
       
    float percent = 0.8f;
   
    //将数据集分为训练是和测试集
    InstanceSet[] splitsets = instset.split(percent);
   
    InstanceSet trainset = splitsets[0];
    InstanceSet testset = splitsets[1]
   
    /**
     * 建立分类器
     */   
    OnlineTrainer trainer = new OnlineTrainer(af);
    Linear pclassifier = trainer.train(trainset);
    pp.removeTargetPipe();
    pclassifier.setPipe(pp);
    af.setStopIncrement(true);
   
    //将分类器保存到模型文件
    pclassifier.saveTo(modelFile)
View Full Code Here

    // 将样本通过Pipe抽取特征
    features = factory.DefaultFeatureAlphabet();
    featurePipe = new Sequence2FeatureSequence(templets, features, labels);
    AddCharRange typePip = new AddCharRange();
    Pipe weightPipe = new WeightPipe(true);
    Pipe pipe = new SeriesPipes(new Pipe[] { new Target2Label(labels),  typePip, featurePipe, weightPipe  });
    return pipe;
  }
View Full Code Here

    //将字符特征转换成字典索引; 
    Pipe sparsepp=new StringArray2SV(af);
    //将目标值对应的索引号作为类别
    Pipe targetpp = new Target2Label(af.DefaultLabelAlphabet())
    //建立pipe组合
    SeriesPipes pp = new SeriesPipes(new Pipe[]{ngrampp,targetpp,sparsepp});

    System.out.print("\nReading data......\n");
    InstanceSet instset = new InstanceSet(pp,af)
    Reader reader = new MyDocumentReader(trainDataPath,"gbk");
    instset.loadThruStagePipes(reader);
    System.out.print("..Reading data complete\n");
   
    //将数据集分为训练是和测试集
    System.out.print("Sspliting....");
    float percent = 0.9f;
    InstanceSet[] splitsets = instset.split(percent);
   
    InstanceSet trainset = splitsets[0];
    InstanceSet testset = splitsets[1]
    System.out.print("..Spliting complete!\n");

    System.out.print("Training...\n");
    BayesTrainer trainer=new BayesTrainer();
    BayesClassifier classifier= (BayesClassifier) trainer.train(trainset);
    pp.removeTargetPipe();
    classifier.setPipe(pp);
    af.setStopIncrement(true);
    System.out.print("..Training complete!\n");
    System.out.print("Saving model...\n");
    classifier.saveTo(bayesModelFile)
    classifier = null;
    System.out.print("..Saving model complete!\n");
    /**
     * 测试
     */
    System.out.print("Loading model...\n");
    BayesClassifier bayes;
    bayes =BayesClassifier.loadFrom(bayesModelFile);
//    bayes =classifier;
    System.out.print("..Loading model complete!\n");
   
    System.out.println("Testing Bayes...");
    int count=0;
    for(int i=0;i<testset.size();i++){
      Instance data = testset.getInstance(i);
      Integer gold = (Integer) data.getTarget();
      Predict<String> pres=bayes.classify(data, Type.STRING, 3);
      String pred_label=pres.getLabel();
//      String pred_label = bayes.getStringLabel(data);
      String gold_label = bayes.getLabel(gold);
     
      if(pred_label.equals(gold_label)){
        //System.out.println(pred_label+" : "+testsetbayes.getInstance(i).getTempData());
        count++;
      }
      else{
//        System.err.println(gold_label+"->"+pred_label+" : "+testset.getInstance(i).getTempData());
//        for(int j=0;j<3;j++)
//          System.out.println(pres.getLabel(j)+":"+pres.getScore(j));
      }
    }
    int bayesCount=count;
    System.out.println("..Testing Bayes complete!");
    System.out.println("Bayes Precision:"+((float)bayesCount/testset.size())+"("+bayesCount+"/"+testset.size()+")");


    /**
     * Knn
     */
    System.out.print("\nKnn\n");
    //建立字典管理器
    AlphabetFactory af2 = AlphabetFactory.buildFactory();
    //使用n元特征
    ngrampp = new NGram(new int[] {2,3});
    //将字符特征转换成字典索引; 
    sparsepp=new StringArray2SV(af2);
    //将目标值对应的索引号作为类别
    targetpp = new Target2Label(af2.DefaultLabelAlphabet())
    //建立pipe组合
    pp = new SeriesPipes(new Pipe[]{ngrampp,targetpp,sparsepp});

    System.out.print("Init dataset...");
    trainset.setAlphabetFactory(af2)
    trainset.setPipes(pp)
    testset.setAlphabetFactory(af2)
    testset.setPipes(pp);     
    for(int i=0;i<trainset.size();i++){
      Instance inst=trainset.get(i);
      inst.setData(inst.getSource());
      int target_id=Integer.parseInt(inst.getTarget().toString());
      inst.setTarget(af.DefaultLabelAlphabet().lookupString(target_id));
      pp.addThruPipe(inst);
    }   
    for(int i=0;i<testset.size();i++){
      Instance inst=testset.get(i);
      inst.setData(inst.getSource());
      int target_id=Integer.parseInt(inst.getTarget().toString());
      inst.setTarget(af.DefaultLabelAlphabet().lookupString(target_id));
      pp.addThruPipe(inst);
    }

    System.out.print("complete!\n");
    System.out.print("Training Knn...\n");
    SparseVectorSimilarity sim=new SparseVectorSimilarity();
    pp.removeTargetPipe();
    KNNClassifier knn=new KNNClassifier(trainset, pp, sim, af2, 7)
    af2.setStopIncrement(true)
    System.out.print("..Training compelte!\n");
    System.out.print("Saving model...\n");
    knn.saveTo(knnModelFile)
    knn = null;
    System.out.print("..Saving model compelte!\n");

   
    System.out.print("Loading model...\n");
    knn =KNNClassifier.loadFrom(knnModelFile);
    System.out.print("..Loading model compelte!\n");
    System.out.println("Testing Knn...\n");
    count=0;
    for(int i=0;i<testset.size();i++){
      Instance data = testset.getInstance(i);
      Integer gold = (Integer) data.getTarget();
      Predict<String> pres=(Predict<String>) knn.classify(data, Type.STRING, 3);
      String pred_label=pres.getLabel();
      String gold_label = knn.getLabel(gold);
     
      if(pred_label.equals(gold_label)){
        //System.out.println(pred_label+" : "+testsetknn.getInstance(i).getTempData());
        count++;
      }
      else{
//        System.err.println(gold_label+"->"+pred_label+" : "+testset.getInstance(i).getTempData());
//        for(int j=0;j<3;j++)
//          System.out.println(pres.getLabel(j)+":"+pres.getScore(j));
      }
    }
    int knnCount=count;
    System.out.println("..Testing Knn Complete");
    System.out.println("Bayes Precision:"+((float)bayesCount/testset.size())+"("+bayesCount+"/"+testset.size()+")");
    System.out.println("Knn Precision:"+((float)knnCount/testset.size())+"("+knnCount+"/"+testset.size()+")");
   
    //建立字典管理器
    AlphabetFactory af3 = AlphabetFactory.buildFactory();
    //使用n元特征
    ngrampp = new NGram(new int[] {2,3 });
    //将字符特征转换成字典索引
    Pipe indexpp = new StringArray2IndexArray(af3);
    //将目标值对应的索引号作为类别
    targetpp = new Target2Label(af3.DefaultLabelAlphabet());   
   
    //建立pipe组合
    pp = new SeriesPipes(new Pipe[]{ngrampp,targetpp,indexpp});
   
    trainset.setAlphabetFactory(af3)
    trainset.setPipes(pp)
    testset.setAlphabetFactory(af3)
    testset.setPipes(pp);
    for(int i=0;i<trainset.size();i++){
      Instance inst=trainset.get(i);
      inst.setData(inst.getSource());
      int target_id=Integer.parseInt(inst.getTarget().toString());
      inst.setTarget(af.DefaultLabelAlphabet().lookupString(target_id));
      pp.addThruPipe(inst);
    }   
    for(int i=0;i<testset.size();i++){
      Instance inst=testset.get(i);
      inst.setData(inst.getSource());
      int target_id=Integer.parseInt(inst.getTarget().toString());
      inst.setTarget(af.DefaultLabelAlphabet().lookupString(target_id));
      pp.addThruPipe(inst);
    }     
   
    /**
     * 建立分类器
     */   
    OnlineTrainer trainer3 = new OnlineTrainer(af3);
    Linear pclassifier = trainer3.train(trainset);
    pp.removeTargetPipe();
    pclassifier.setPipe(pp);
    af.setStopIncrement(true);
   
    //将分类器保存到模型文件
    pclassifier.saveTo(linearModelFile)
View Full Code Here

    // 将样本通过Pipe抽取特征
    IFeatureAlphabet features = factory.DefaultFeatureAlphabet();
    featurePipe = new Sequence2FeatureSequence(templets, features, labels);

    Pipe pipe = new SeriesPipes(new Pipe[] { new Target2Label(labels), featurePipe });
    return pipe;
  }
View Full Code Here

     *
     * @param reader
     * @throws Exception
     */
    public void loadThruStagePipes(Reader reader) throws Exception {
        SeriesPipes p = (SeriesPipes) pipes;
        // 通过迭代加入样本
        Pipe p1 = p.getPipe(0);
        while (reader.hasNext()) {
            Instance inst = reader.next();
            if(inst!=null){
                if (p1 != null)
                    p1.addThruPipe(inst);
                this.add(inst);
              
            };
        }
        for (int i = 1; i < p.size(); i++)
            p.getPipe(i).process(this);
    }
View Full Code Here

     *
     * @param reader
     * @throws Exception
     */
    public void loadThruStagePipesForMultiCorpus(Reader[] readers, String[] corpusNames) throws Exception {
        SeriesPipes p = (SeriesPipes) pipes;
        // 通过迭代加入样本
        Pipe p1 = p.getPipe(0);
        for(int i = 0; i < readers.length; i++) {
          while (readers[i].hasNext()) {
              Instance inst = readers[i].next();
              inst.setClasue(corpusNames[i]);
              if(inst!=null){
                  if (p1 != null)
                      p1.addThruPipe(inst);
                  this.add(inst);
              };
          }
        }
       
        for (int i = 1; i < p.size(); i++)
            p.getPipe(i).process(this);
    }
View Full Code Here

    Pipe indexpp = new StringArray2IndexArray(af);
    //将目标值对应的索引号作为类别
    Pipe targetpp = new Target2Label(af.DefaultLabelAlphabet());   
   
    //建立pipe组合
    SeriesPipes pp = new SeriesPipes(new Pipe[]{ngrampp,targetpp,indexpp});
   
    InstanceSet trainset = new InstanceSet(pp,af);
    InstanceSet testset = new InstanceSet(pp,af);
   
    //用不同的Reader读取相应格式的文件
    Reader reader = new DocumentReader(trainDataPath);
   
    //读入数据,并进行数据处理
    trainset.loadThruStagePipes(reader);
   
    reader = new DocumentReader(testDataPath);
     
    testset.loadThruStagePipes(reader);
   
   
    /**
     * 建立分类器
     */   
    OnlineTrainer trainer = new OnlineTrainer(af);
    Linear pclassifier = trainer.train(trainset);
    pp.removeTargetPipe();
    pclassifier.setPipe(pp);
    af.setStopIncrement(true);
   
    //将分类器保存到模型文件
    pclassifier.saveTo(modelFile)
View Full Code Here

      features = factory.DefaultFeatureAlphabet();
    else
      features = factory.rebuildFeatureAlphabet("feature");
    featurePipe = new Sequence2FeatureSequence(templets, features, labels);

    Pipe pipe = new SeriesPipes(new Pipe[] { prePipe,
        new Target2Label(labels), featurePipe });
    return pipe;
  }
View Full Code Here

    // /////////////////
    if (testfile != null) {

      Pipe tpipe;
      if (false) {// 如果test data没有标注
        tpipe = new SeriesPipes(new Pipe[] { featurePipe });
      } else {
        tpipe = pipe;
      }

      // 测试集
View Full Code Here

TOP

Related Classes of org.fnlp.nlp.pipe.SeriesPipes

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.