Package org.encog.neural.networks.layers

Examples of org.encog.neural.networks.layers.BasicLayer


    {
        // random matrix data.  However, it provides a constant starting point
        // for the unit tests.
       
        BasicNetwork network = new BasicNetwork();
        network.addLayer(new BasicLayer(null,true,2));
        network.addLayer(new BasicLayer(new ActivationSigmoid(),true,3));
        network.addLayer(new BasicLayer(new ActivationSigmoid(),false,3));
        network.addLayer(new BasicLayer(null,false,1));
        network.getStructure().finalizeStructure();
        (new NguyenWidrowRandomizer()).randomize( network );
       
        return network;
    }
View Full Code Here


        if (layer.getCount() == 0) {
          throw new EncogError("Layer can't have zero neurons, Unknown architecture element: "
              + architecture + ", can't parse: " + part);
        }

        result.addLayer(new BasicLayer(af, bias,
            layer.getCount()));

      }
    }
View Full Code Here

  public MLMethod generate() {

    if( this.activationOutput==null )
      this.activationOutput = this.activationHidden;
   
    final Layer input = new BasicLayer(null, true,
        this.inputNeurons);

    final BasicNetwork result = new BasicNetwork();
    result.addLayer(input);


    for (final Integer count : this.hidden) {

      final Layer hidden = new BasicLayer(this.activationHidden, true, count);

      result.addLayer(hidden);
    }

    final Layer output = new BasicLayer(this.activationOutput, false,
        this.outputNeurons);
    result.addLayer(output);

    result.getStructure().finalizeStructure();
    result.reset();
View Full Code Here

   * @return The generated network.
   */
  public MLMethod generate() {
    final BasicNetwork network = new BasicNetwork();

    final Layer inputLayer = new BasicLayer(new ActivationLinear(), true,
        this.inputNeurons);
    final Layer outputLayer = new BasicLayer(new ActivationLinear(), false,
        this.outputNeurons);

    network.addLayer(inputLayer);
    network.addLayer(outputLayer);
    network.getStructure().finalizeStructure();
View Full Code Here

TOP

Related Classes of org.encog.neural.networks.layers.BasicLayer

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.