} else if (pnnLayer.getName().equalsIgnoreCase("r")) {
outmodel = PNNOutputMode.Regression;
} else if (pnnLayer.getName().equalsIgnoreCase("u")) {
outmodel = PNNOutputMode.Unsupervised;
} else {
throw new NeuralNetworkError("Unknown model: "
+ pnnLayer.getName());
}
final ParamsHolder holder = new ParamsHolder(pnnLayer.getParams());
final String kernelStr = holder.getString("KERNEL", false, "gaussian");
if (kernelStr.equalsIgnoreCase("gaussian")) {
kernel = PNNKernelType.Gaussian;
} else if (kernelStr.equalsIgnoreCase("reciprocal")) {
kernel = PNNKernelType.Reciprocal;
} else {
throw new NeuralNetworkError("Unknown kernel: " + kernelStr);
}
final BasicPNN result = new BasicPNN(kernel, outmodel,
inputCount, outputCount);