Package org.encog.ml.data.specific

Examples of org.encog.ml.data.specific.BiPolarNeuralData


    if( this.network instanceof BoltzmannMachine ) {
      EncogWorkBench.displayError("Error", "Boltzmann machine training is not supported.");
      return;
    }
   
    BiPolarNeuralData pattern = new BiPolarNeuralData(this.grid.length);

    for (int i = 0; i < this.grid.length; i++) {
      pattern.setData(i, grid[i]);
    }

    ((HopfieldNetwork) this.network).addPattern(pattern);

  }
View Full Code Here


        "OOOOOOOOOO"  } };

  public BiPolarNeuralData convertPattern(String[][] data, int index)
  {
    int resultIndex = 0;
    BiPolarNeuralData result = new BiPolarNeuralData(WIDTH*HEIGHT);
    for(int row=0;row<HEIGHT;row++)
    {
      for(int col=0;col<WIDTH;col++)
      {
        char ch = data[index][row].charAt(col);
        result.setData(resultIndex++, ch=='O');
      }
    }
    return result;
  }
View Full Code Here

 
  public void evaluate(HopfieldNetwork hopfieldLogic, String[][] pattern)
  {
    for(int i=0;i<pattern.length;i++)
    {
      BiPolarNeuralData pattern1 = convertPattern(pattern,i);
      hopfieldLogic.setCurrentState(pattern1);
      int cycles = hopfieldLogic.runUntilStable(100);
      BiPolarNeuralData pattern2 = (BiPolarNeuralData)hopfieldLogic.getCurrentState();
      System.out.println("Cycles until stable(max 100): " + cycles + ", result=");
      display( pattern1, pattern2);
      System.out.println("----------------------");
    }
  }
View Full Code Here

  /**
   * Train the neural network.
   */
  public void train() {
    BiPolarNeuralData pattern = new BiPolarNeuralData(this.grid.length);
   
    for(int i=0;i<this.grid.length;i++) {
      pattern.setData(i, grid[i])
    }

    this.hopfield.addPattern(pattern);

  }
View Full Code Here

  public static final int INPUT_NEURONS = (IN_CHARS  * BITS_PER_CHAR);
  public static final int OUTPUT_NEURONS = (OUT_CHARS * BITS_PER_CHAR);
          
  public BiPolarNeuralData stringToBipolar(String str)
  {
    BiPolarNeuralData result = new BiPolarNeuralData(str.length()*BITS_PER_CHAR);
    int currentIndex = 0;
    for(int i=0;i<str.length();i++)
    {
      char ch = Character.toUpperCase(str.charAt(i));
      int idx = ch-FIRST_CHAR;
     
      int place = 1;
      for( int j=0;j<BITS_PER_CHAR;j++)
      {
        boolean value = (idx&place)>0;
        result.setData(currentIndex++,value);
        place*=2;
      }
     
    }
    return result;
View Full Code Here

    return result.toString();
  }
 
  public BiPolarNeuralData randomBiPolar(int size)
  {
    BiPolarNeuralData result = new BiPolarNeuralData(size);
    for(int i=0;i<size;i++)
    {
      if(Math.random()>0.5)
        result.setData(i,-1);
      else
        result.setData(i,1);
    }
    return result;
  }
View Full Code Here

  public void run() {
    this.setupInput();
    ART1 logic = new ART1(INPUT_NEURONS,OUTPUT_NEURONS);

    for (int i = 0; i < PATTERN.length; i++) {
      BiPolarNeuralData in = new BiPolarNeuralData(this.input[i]);
      BiPolarNeuralData out = new BiPolarNeuralData(OUTPUT_NEURONS);
      logic.compute(in, out);
      if (logic.hasWinner()) {
        System.out.println(PATTERN[i] + " - " + logic.getWinner());
      } else {
        System.out.println(PATTERN[i]
View Full Code Here

public class TestBiPolarNeuralData extends TestCase {
  public void testConstruct()
  {
    boolean[] d = { true, false };
    BiPolarNeuralData data = new BiPolarNeuralData(d);
    Assert.assertEquals("[T,F]",data.toString());
    Assert.assertEquals(1,data.getData(0),0.5);
    Assert.assertEquals(-1,data.getData(1),0.5);
    Assert.assertEquals(true, data.getBoolean(0));
    Assert.assertEquals(false, data.getBoolean(1));
    Assert.assertEquals(data.getData().length,2);
  }
View Full Code Here

  }
 
  public void testClone()
  {
    boolean[] d = { true, false };
    BiPolarNeuralData data2 = new BiPolarNeuralData(d);
    BiPolarNeuralData data = (BiPolarNeuralData)data2.clone();
    Assert.assertEquals("[T,F]",data.toString());
    Assert.assertEquals(1,data.getData(0),0.5);
    Assert.assertEquals(-1,data.getData(1),0.5);
    Assert.assertEquals(true, data.getBoolean(0));
    Assert.assertEquals(false, data.getBoolean(1));
    Assert.assertEquals(data.getData().length,2);
  }
View Full Code Here

    Assert.assertEquals(data.getData().length,2);
  }
 
  public void testError()
  {
    BiPolarNeuralData data = new BiPolarNeuralData(2);
    Assert.assertEquals(2, data.size());
   
    try
    {
      data.add(0, 0);
      Assert.assertTrue(false);
    }
    catch(Exception e)
    {
    }
View Full Code Here

TOP

Related Classes of org.encog.ml.data.specific.BiPolarNeuralData

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.