JordanPattern jordanPattern = new JordanPattern();
jordanPattern.setInputNeurons(input);
jordanPattern.addHiddenLayer(hidden);
jordanPattern.setOutputNeurons(ideal);
BasicNetwork network = (BasicNetwork)jordanPattern.generate();
MLDataSet training = RandomTrainingFactory.generate(1000, 5, network.getInputCount(), network.getOutputCount(), -1, 1);
ResilientPropagation prop = new ResilientPropagation(network,training);
prop.iteration();
prop.iteration();
}