Package org.encog

Examples of org.encog.EncogError


    case intType:
      return "i";
    case enumType:
      return "e";
    }
    throw new EncogError("Unknown type: "
        + mapping.getVariableType().toString());
  }
View Full Code Here


            prg.compileEPL(code);
            prg.setScore(score);
            prg.setSpecies(lastSpecies);
            prg.setAdjustedScore(adjustedScore);
            if (lastSpecies == null) {
              throw new EncogError(
                  "Have not defined a species yet");
            } else {
              lastSpecies.add(prg);
            }
            count++;
View Full Code Here

   * {@inheritDoc}
   */
  @Override
  public Centroid<MLDataPair> createCentroid() {
    if( !(this.input instanceof BasicMLData) ) {
      throw new EncogError("The input data type of " + this.input.getClass().getSimpleName() + " must be BasicMLData.");
    }
    return new BasicMLDataPairCentroid(this);
  }
View Full Code Here

  public MLMethod create(final String architecture, final int input,
      final int output) {

    final List<String> layers = ArchitectureParse.parseLayers(architecture);
    if (layers.size() != MAX_LAYERS) {
      throw new EncogError(
          "SRN Networks must have exactly three elements, "
          + "separated by ->.");
    }

    final ArchitectureLayer inputLayer = ArchitectureParse.parseLayer(
View Full Code Here

   * @param output The vector to copy to.
   * @param startPos The starting position to write to.
   */
  public void copyWindow(double[] output, int startPos) {
    if (!isReady()) {
      throw new EncogError("Can't produce a timeslice of size "
          + this.sliceCount + ", there are only "
          + this.window.size() + " vectors loaded.");
    }

    int currentIndex = startPos;
View Full Code Here

   */
  public MLTrain create(final MLMethod method,
      final MLDataSet training, final String argsStr) {

    if (!(method instanceof ContainsFlat)) {
      throw new EncogError(
          "RPROP training cannot be used on a method of type: "
              + method.getClass().getName());
    }

    final Map<String, String> args = ArchitectureParse.parseParams(argsStr);
View Full Code Here

  public MLMethod create(final String architecture, final int input,
      final int output) {

    final List<String> layers = ArchitectureParse.parseLayers(architecture);
    if (layers.size() != MAX_LAYERS) {
      throw new EncogError(
          "SVM's must have exactly three elements, separated by ->.");
    }

    final ArchitectureLayer inputLayer = ArchitectureParse.parseLayer(
        layers.get(0), input);
    final ArchitectureLayer paramsLayer = ArchitectureParse.parseLayer(
        layers.get(1), input);
    final ArchitectureLayer outputLayer = ArchitectureParse.parseLayer(
        layers.get(2), output);

    final String name = paramsLayer.getName();
    final String kernelStr = paramsLayer.getParams().get("KERNEL");
    final String svmTypeStr = paramsLayer.getParams().get("TYPE");

    SVMType svmType = SVMType.NewSupportVectorClassification;
    KernelType kernelType = KernelType.RadialBasisFunction;

    boolean useNew = true;

    if (svmTypeStr == null) {
      useNew = true;
    } else if (svmTypeStr.equalsIgnoreCase("NEW")) {
      useNew = true;
    } else if (svmTypeStr.equalsIgnoreCase("OLD")) {
      useNew = false;
    } else {
      throw new EncogError("Unsupported type: " + svmTypeStr
          + ", must be NEW or OLD.");
    }

    if (name.equalsIgnoreCase("C")) {
      if (useNew) {
        svmType = SVMType.NewSupportVectorClassification;
      } else {
        svmType = SVMType.SupportVectorClassification;
      }
    } else if (name.equalsIgnoreCase("R")) {
      if (useNew) {
        svmType = SVMType.NewSupportVectorRegression;
      } else {
        svmType = SVMType.EpsilonSupportVectorRegression;
      }
    } else {
      throw new EncogError("Unsupported mode: " + name
          + ", must be C for classify or R for regression.");
    }

    if (kernelStr == null) {
      kernelType = KernelType.RadialBasisFunction;
    } else if ("linear".equalsIgnoreCase(kernelStr)) {
      kernelType = KernelType.Linear;
    } else if ("poly".equalsIgnoreCase(kernelStr)) {
      kernelType = KernelType.Poly;
    } else if ("precomputed".equalsIgnoreCase(kernelStr)) {
      kernelType = KernelType.Precomputed;
    } else if ("rbf".equalsIgnoreCase(kernelStr)) {
      kernelType = KernelType.RadialBasisFunction;
    } else if ("sigmoid".equalsIgnoreCase(kernelStr)) {
      kernelType = KernelType.Sigmoid;
    } else {
      throw new EncogError("Unsupported kernel: " + kernelStr
          + ", must be linear,poly,precomputed,rbf or sigmoid.");
    }

    final int inputCount = inputLayer.getCount();
    final int outputCount = outputLayer.getCount();

    if (outputCount != 1) {
      throw new EncogError("SVM can only have an output size of 1.");
    }

    final SVM result = new SVM(inputCount, svmType, kernelType);

    return result;
View Full Code Here

  public MLTrain create(final MLMethod method,
      final MLDataSet training,
      final String argsStr) {

    if (!(method instanceof SVM)) {
      throw new EncogError(
          "SVM Train training cannot be used on a method of type: "
              + method.getClass().getName());
    }

    final double defaultGamma = 1.0 / ((SVM) method).getInputCount();
View Full Code Here

   */
  public MLMethod create(final String architecture, final int input,
      final int output) {
   
    if( input<=0 ) {
      throw new EncogError("Must have at least one input for EPL.");
    }
   
    if( output<=0 ) {
      throw new EncogError("Must have at least one output for EPL.");
    }
   
   
    final Map<String, String> args = ArchitectureParse.parseParams(architecture);
    final ParamsHolder holder = new ParamsHolder(args);
View Full Code Here

   *            The maximum depth to generate to.
   */
  public AbstractPrgGenerator(final EncogProgramContext theContext,
      final int theMaxDepth) {
    if (theContext.getFunctions().size() == 0) {
      throw new EncogError("There are no opcodes defined");
    }

    this.context = theContext;
    this.maxDepth = theMaxDepth;
    this.hasEnum = this.context.hasEnum();
View Full Code Here

TOP

Related Classes of org.encog.EncogError

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.