Package org.ejml.data

Examples of org.ejml.data.DenseMatrix64F


    }

    @Test
    public void _solveVectorInternal() {
        int width = 10;
        DenseMatrix64F LU = RandomMatrices.createRandom(width,width,rand);

        double a[] = new double[]{1,2,3,4,5,6,7,8,9,10};
        double b[] = new double[]{1,2,3,4,5,6,7,8,9,10};
        for( int i = 0; i < width; i++ ) LU.set(i,i,1);

        TriangularSolver.solveL(LU.data,a,width);
        TriangularSolver.solveU(LU.data,a,width);

        DebugDecompose alg = new DebugDecompose(width);
View Full Code Here


    public void mult() {
        SimpleMatrix a = SimpleMatrix.random(3,2, 0, 1, rand);
        SimpleMatrix b = SimpleMatrix.random(2,3, 0, 1, rand);
        SimpleMatrix c = a.mult(b);

        DenseMatrix64F c_dense = new DenseMatrix64F(3,3);
        CommonOps.mult(a.mat,b.mat,c_dense);

        EjmlUnitTests.assertEquals(c_dense,c.mat,1e-8);
    }
View Full Code Here

    public void kron() {
        SimpleMatrix a = SimpleMatrix.random(3,2, 0, 1, rand);
        SimpleMatrix b = SimpleMatrix.random(2,3, 0, 1, rand);
        SimpleMatrix c = a.kron(b);

        DenseMatrix64F c_dense = new DenseMatrix64F(6,6);
        CommonOps.kron(a.getMatrix(),b.getMatrix(),c_dense);

        EjmlUnitTests.assertEquals(c_dense,c.mat,1e-8);
    }
View Full Code Here

    public void plus() {
        SimpleMatrix a = SimpleMatrix.random(3,2, 0, 1, rand);
        SimpleMatrix b = SimpleMatrix.random(3,2, 0, 1, rand);
        SimpleMatrix c = a.plus(b);

        DenseMatrix64F c_dense = new DenseMatrix64F(3,2);
        CommonOps.add(a.mat,b.mat,c_dense);

        EjmlUnitTests.assertEquals(c_dense,c.mat,1e-8);
    }
View Full Code Here

    Random rand = new Random(234234);

    @Test
    public void testAll() {
        for( int N = 2; N <= UnrolledDeterminantFromMinor.MAX; N++ ) {
            DenseMatrix64F A = RandomMatrices.createRandom(N,N,rand);

            double unrolled = UnrolledDeterminantFromMinor.det(A);
            LUDecompositionAlt alg = new LUDecompositionAlt();
            assertTrue( alg.decompose(A) );
            double expected = alg.computeDeterminant();
View Full Code Here

    public void minus() {
        SimpleMatrix a = SimpleMatrix.random(3,2, 0, 1, rand);
        SimpleMatrix b = SimpleMatrix.random(3,2, 0, 1, rand);
        SimpleMatrix c = a.minus(b);

        DenseMatrix64F c_dense = new DenseMatrix64F(3,2);
        CommonOps.sub(a.mat,b.mat,c_dense);

        EjmlUnitTests.assertEquals(c_dense,c.mat,1e-8);
    }
View Full Code Here

    public void plus_beta() {
        SimpleMatrix a = SimpleMatrix.random(3,2, 0, 1, rand);
        SimpleMatrix b = SimpleMatrix.random(3,2, 0, 1, rand);
        SimpleMatrix c = a.plus(2.5,b);

        DenseMatrix64F c_dense = new DenseMatrix64F(3,2);
        CommonOps.add(a.mat,2.5,b.mat,c_dense);

        EjmlUnitTests.assertEquals(c_dense,c.mat,1e-8);
    }
View Full Code Here

    /**
     * Compute a solution for a system with more variables than equations
     */
    public void underDetermined_wide_solve() {
        // create a matrix where two rows are linearly dependent
        DenseMatrix64F A = new DenseMatrix64F(2,3,true,1,2,3,2,3,4);

        DenseMatrix64F y = new DenseMatrix64F(2,1,true,4,7);
        assertTrue(solver.setA(A));

        DenseMatrix64F x = new DenseMatrix64F(3,1);
        solver.solve(y,x);

        DenseMatrix64F found = new DenseMatrix64F(2,1);
        CommonOps.mult(A, x, found);

        // there are multiple 'x' which will generate the same solution, see if this is one of them
        assertTrue(MatrixFeatures.isEquals(y, found, 1e-8));
    }
View Full Code Here

    @Test
    public void invert() {
        SimpleMatrix a = SimpleMatrix.random(3,3, 0, 1, rand);
        SimpleMatrix inv = a.invert();

        DenseMatrix64F d_inv = new DenseMatrix64F(3,3);
        CommonOps.invert(a.mat,d_inv);

         EjmlUnitTests.assertEquals(d_inv,inv.mat,1e-8);
    }
View Full Code Here

    /**
     * Compute the pseudo inverse a system with more variables than equations
     */
    public void underDetermined_wide_inv() {
        // create a matrix where two rows are linearly dependent
        DenseMatrix64F A = new DenseMatrix64F(2,3,true,1,2,3,2,3,4);

        DenseMatrix64F y = new DenseMatrix64F(2,1,true,4,7);
        assertTrue(solver.setA(A));

        DenseMatrix64F x = new DenseMatrix64F(3,1);
        solver.solve(y,x);

        // now test the pseudo inverse
        DenseMatrix64F A_pinv = new DenseMatrix64F(3,2);
        DenseMatrix64F found = new DenseMatrix64F(3,1);
        solver.invert(A_pinv);

        CommonOps.mult(A_pinv,y,found);

        assertTrue(MatrixFeatures.isEquals(x, found,1e-8));
View Full Code Here

TOP

Related Classes of org.ejml.data.DenseMatrix64F

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.