return sb.toString();
}
private static PMML createPMMLDocument( final ScoreCardModel model ) {
final Scorecard pmmlScorecard = ScorecardPMMLUtils.createScorecard();
final Output output = new Output();
final Characteristics characteristics = new Characteristics();
final MiningSchema miningSchema = new MiningSchema();
Extension extension = new Extension();
extension.setName( PMMLExtensionNames.SCORECARD_RESULTANT_SCORE_CLASS );
extension.setValue( model.getFactName() );
pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );
extension = new Extension();
extension.setName( PMMLExtensionNames.SCORECARD_IMPORTS );
pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );
List<String> imports = new ArrayList<String>();
StringBuilder importBuilder = new StringBuilder();
for ( Import imp : model.getImports().getImports() ) {
if ( !imports.contains( imp.getType() ) ) {
imports.add( imp.getType() );
importBuilder.append( imp.getType() ).append( "," );
}
}
extension.setValue( importBuilder.toString() );
extension = new Extension();
extension.setName( PMMLExtensionNames.SCORECARD_RESULTANT_SCORE_FIELD );
extension.setValue( model.getFieldName() );
pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );
extension = new Extension();
extension.setName( PMMLExtensionNames.SCORECARD_PACKAGE );
String pkgName = model.getPackageName();
extension.setValue( !( pkgName == null || pkgName.isEmpty() ) ? pkgName : null );
pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );
final String modelName = convertToJavaIdentifier( model.getName() );
pmmlScorecard.setModelName( modelName );
pmmlScorecard.setInitialScore( model.getInitialScore() );
pmmlScorecard.setUseReasonCodes( model.isUseReasonCodes() );
if ( model.isUseReasonCodes() ) {
pmmlScorecard.setBaselineScore( model.getBaselineScore() );
pmmlScorecard.setReasonCodeAlgorithm( model.getReasonCodesAlgorithm() );
}
for ( final org.drools.workbench.models.guided.scorecard.shared.Characteristic characteristic : model.getCharacteristics() ) {
final Characteristic _characteristic = new Characteristic();
characteristics.getCharacteristics().add( _characteristic );
extension = new Extension();
extension.setName( PMMLExtensionNames.CHARACTERTISTIC_EXTERNAL_CLASS );
extension.setValue( characteristic.getFact() );
_characteristic.getExtensions().add( extension );
extension = new Extension();
extension.setName( PMMLExtensionNames.CHARACTERTISTIC_DATATYPE );
if ( "string".equalsIgnoreCase( characteristic.getDataType() ) ) {
extension.setValue( XLSKeywords.DATATYPE_TEXT );
} else if ( "int".equalsIgnoreCase( characteristic.getDataType() ) || "double".equalsIgnoreCase( characteristic.getDataType() ) ) {
extension.setValue( XLSKeywords.DATATYPE_NUMBER );
} else if ( "boolean".equalsIgnoreCase( characteristic.getDataType() ) ) {
extension.setValue( XLSKeywords.DATATYPE_BOOLEAN );
} else {
System.out.println( ">>>> Found unknown data type :: " + characteristic.getDataType() );
}
_characteristic.getExtensions().add( extension );
if ( model.isUseReasonCodes() ) {
_characteristic.setBaselineScore( characteristic.getBaselineScore() );
_characteristic.setReasonCode( characteristic.getReasonCode() );
}
_characteristic.setName( characteristic.getName() );
final MiningField miningField = new MiningField();
miningField.setName( characteristic.getField() );
miningField.setUsageType( FIELDUSAGETYPE.ACTIVE );
miningField.setInvalidValueTreatment( INVALIDVALUETREATMENTMETHOD.RETURN_INVALID );
miningSchema.getMiningFields().add( miningField );
extension = new Extension();
extension.setName( PMMLExtensionNames.CHARACTERTISTIC_EXTERNAL_CLASS );
extension.setValue( characteristic.getFact() );
miningField.getExtensions().add( extension );
final String[] numericOperators = new String[]{ "=", ">", "<", ">=", "<=" };
for ( final org.drools.workbench.models.guided.scorecard.shared.Attribute attribute : characteristic.getAttributes() ) {
final Attribute _attribute = new Attribute();
_characteristic.getAttributes().add( _attribute );
extension = new Extension();
extension.setName( PMMLExtensionNames.CHARACTERTISTIC_FIELD );
extension.setValue( characteristic.getField() );
_attribute.getExtensions().add( extension );
if ( model.isUseReasonCodes() ) {
_attribute.setReasonCode( attribute.getReasonCode() );
}
_attribute.setPartialScore( attribute.getPartialScore() );
final String operator = attribute.getOperator();
final String dataType = characteristic.getDataType();
String predicateResolver;
if ( "boolean".equalsIgnoreCase( dataType ) ) {
predicateResolver = operator.toUpperCase();
} else if ( "String".equalsIgnoreCase( dataType ) ) {
if ( operator.contains( "=" ) ) {
predicateResolver = operator + attribute.getValue();
} else {
predicateResolver = attribute.getValue() + ",";
}
} else {
if ( ArrayUtils.contains( numericOperators, operator ) ) {
predicateResolver = operator + " " + attribute.getValue();
} else {
predicateResolver = attribute.getValue().replace( ",", "-" );
}
}
extension = new Extension();
extension.setName( "predicateResolver" );
extension.setValue( predicateResolver );
_attribute.getExtensions().add( extension );
}
}
pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( miningSchema );
pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( output );
pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( characteristics );
return new PMMLGenerator().generateDocument( pmmlScorecard );
}