Package org.dmg.pmml.pmml_4_1.descr

Examples of org.dmg.pmml.pmml_4_1.descr.Characteristics


    public void testReasonCodes() throws Exception {
        for (Object serializable : pmmlDocument.getAssociationModelsAndBaselineModelsAndClusteringModels()){
            if (serializable instanceof Scorecard){
                for (Object obj :((Scorecard)serializable) .getExtensionsAndCharacteristicsAndMiningSchemas()){
                    if (obj instanceof Characteristics){
                        Characteristics characteristics = (Characteristics)obj;
                        assertEquals(4, characteristics.getCharacteristics().size());
                        for (Characteristic characteristic : characteristics.getCharacteristics()){
                            for (Attribute attribute : characteristic.getAttributes()){
                                assertNotNull(attribute.getReasonCode());
                            }
                        }
                        return;
View Full Code Here


    public void testBaselineScores() throws Exception {
        for (Object serializable : pmmlDocument.getAssociationModelsAndBaselineModelsAndClusteringModels()){
            if (serializable instanceof Scorecard){
                for (Object obj :((Scorecard)serializable) .getExtensionsAndCharacteristicsAndMiningSchemas()){
                    if (obj instanceof Characteristics){
                        Characteristics characteristics = (Characteristics)obj;
                        assertEquals(4, characteristics.getCharacteristics().size());
                        assertEquals(10.0, characteristics.getCharacteristics().get(0).getBaselineScore());
                        assertEquals(99.0, characteristics.getCharacteristics().get(1).getBaselineScore());
                        assertEquals(12.0, characteristics.getCharacteristics().get(2).getBaselineScore());
                        assertEquals(0.0, characteristics.getCharacteristics().get(3).getBaselineScore());
                        assertEquals(25.0, ((Scorecard)serializable).getBaselineScore());
                        return;
                    }
                }
            }
View Full Code Here

    }

    private static PMML createPMMLDocument( final ScoreCardModel model ) {
        final Scorecard pmmlScorecard = ScorecardPMMLUtils.createScorecard();
        final Output output = new Output();
        final Characteristics characteristics = new Characteristics();
        final MiningSchema miningSchema = new MiningSchema();

        Extension extension = new Extension();
        extension.setName( PMMLExtensionNames.EXTERNAL_CLASS );
        extension.setValue( model.getFactName() );

        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );

        extension = new Extension();
        extension.setName( PMMLExtensionNames.MODEL_IMPORTS );
        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );
        List<String> imports = new ArrayList<String>();
        StringBuilder importBuilder = new StringBuilder();
        for ( Import imp : model.getImports().getImports() ) {
            if ( !imports.contains( imp.getType() ) ) {
                imports.add( imp.getType() );
                importBuilder.append( imp.getType() ).append( "," );
            }
        }
        extension.setValue( importBuilder.toString() );

        extension = new Extension();
        extension.setName( ScorecardPMMLExtensionNames.SCORECARD_RESULTANT_SCORE_FIELD );
        extension.setValue( model.getFieldName() );
        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );

        extension = new Extension();
        extension.setName( PMMLExtensionNames.MODEL_PACKAGE );
        String pkgName = model.getPackageName();
        extension.setValue( !( pkgName == null || pkgName.isEmpty() ) ? pkgName : null );
        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );

        final String modelName = convertToJavaIdentifier( model.getName() );
        pmmlScorecard.setModelName( modelName );
        pmmlScorecard.setInitialScore( model.getInitialScore() );
        pmmlScorecard.setUseReasonCodes( model.isUseReasonCodes() );

        if ( model.isUseReasonCodes() ) {
            pmmlScorecard.setBaselineScore( model.getBaselineScore() );
            pmmlScorecard.setReasonCodeAlgorithm( model.getReasonCodesAlgorithm() );
        }

        for ( final org.drools.workbench.models.guided.scorecard.shared.Characteristic characteristic : model.getCharacteristics() ) {
            final Characteristic _characteristic = new Characteristic();
            characteristics.getCharacteristics().add( _characteristic );

            extension = new Extension();
            extension.setName( PMMLExtensionNames.EXTERNAL_CLASS );
            extension.setValue( characteristic.getFact() );
            _characteristic.getExtensions().add( extension );
View Full Code Here

    }

    private void validateWeights() {
        for (Object obj :scorecard.getExtensionsAndCharacteristicsAndMiningSchemas()){
            if (obj instanceof Characteristics){
                Characteristics characteristics = (Characteristics)obj;
                for (Characteristic characteristic : characteristics.getCharacteristics()){
                    for (Attribute attribute : characteristic.getAttributes()){
                        String newCellRef = createDataTypeCellRef(ScorecardPMMLUtils.getExtensionValue(attribute.getExtensions(), "cellRef"),2);
                        String weight = ScorecardPMMLUtils.getExtensionValue(attribute.getExtensions(), ScorecardPMMLExtensionNames.CHARACTERTISTIC_WEIGHT);
                        if ( StringUtils.isEmpty(weight) || !isDouble(weight)){
                            parseErrors.add(new ScorecardError(newCellRef, "Attribute is missing weight or specified weight is not a double."));
View Full Code Here

    }

    private void validateReasonCodes() {
        for (Object obj :scorecard.getExtensionsAndCharacteristicsAndMiningSchemas()){
            if (obj instanceof Characteristics){
                Characteristics characteristics = (Characteristics)obj;
                for (Characteristic characteristic : characteristics.getCharacteristics()){
                    String charReasonCode = characteristic.getReasonCode();
                    if (charReasonCode == null || StringUtils.isEmpty(charReasonCode)){
                        for (Attribute attribute : characteristic.getAttributes()){
                            String newCellRef = createDataTypeCellRef(ScorecardPMMLUtils.getExtensionValue(attribute.getExtensions(), "cellRef"),3);
                            String attrReasonCode = attribute.getReasonCode();
View Full Code Here

    private void validateBaselineScores() {
        for (Object obj :scorecard.getExtensionsAndCharacteristicsAndMiningSchemas()){
            Double scorecardBaseline = scorecard.getBaselineScore();
            if (obj instanceof Characteristics){
                Characteristics characteristics = (Characteristics)obj;
                for (Characteristic characteristic : characteristics.getCharacteristics()){
                    Double charBaseline = characteristic.getBaselineScore();
                    if  ( (charBaseline == null || charBaseline.doubleValue() == 0)
                            && ((scorecardBaseline == null || scorecardBaseline.doubleValue() == 0)) ){
                        String newCellRef = createDataTypeCellRef(ScorecardPMMLUtils.getExtensionValue(characteristic.getExtensions(), "cellRef"),2);
                        parseErrors.add(new ScorecardError(newCellRef, "Characteristic is missing Baseline Score"));
View Full Code Here

    }

    private void checkForInvalidDataTypes() {
        for (Object obj :scorecard.getExtensionsAndCharacteristicsAndMiningSchemas()){
            if (obj instanceof Characteristics){
                Characteristics characteristics = (Characteristics)obj;
                for (Characteristic characteristic : characteristics.getCharacteristics()){
                    String dataType = ScorecardPMMLUtils.getExtensionValue(characteristic.getExtensions(), ScorecardPMMLExtensionNames.CHARACTERTISTIC_DATATYPE);
                    String newCellRef = createDataTypeCellRef(ScorecardPMMLUtils.getExtensionValue(characteristic.getExtensions(), "cellRef"),1);
                    if ( dataType == null || StringUtils.isEmpty(dataType)) {
                        parseErrors.add(new ScorecardError(newCellRef, "Missing Data Type!"));
                    else  if ( !XLSKeywords.DATATYPE_TEXT.equalsIgnoreCase(dataType) && !XLSKeywords.DATATYPE_NUMBER.equalsIgnoreCase(dataType&& !XLSKeywords.DATATYPE_BOOLEAN.equalsIgnoreCase(dataType)){
View Full Code Here

    }

    private void checkForMissingAttributes() {
        for (Object obj :scorecard.getExtensionsAndCharacteristicsAndMiningSchemas()){
            if (obj instanceof Characteristics){
                Characteristics characteristics = (Characteristics)obj;
                for (Characteristic characteristic : characteristics.getCharacteristics()){
                    String newCellRef = ScorecardPMMLUtils.getExtensionValue(characteristic.getExtensions(), "cellRef");
                    if ( characteristic.getAttributes().size() == 0 ) {
                        parseErrors.add(new ScorecardError(newCellRef, "Missing Attribute Bins for Characteristic '"+characteristic.getName()+"'."));
                    }
                }
View Full Code Here

    }

    private static PMML createPMMLDocument( final ScoreCardModel model ) {
        final Scorecard pmmlScorecard = ScorecardPMMLUtils.createScorecard();
        final Output output = new Output();
        final Characteristics characteristics = new Characteristics();
        final MiningSchema miningSchema = new MiningSchema();

        Extension extension = new Extension();
        extension.setName( PMMLExtensionNames.SCORECARD_RESULTANT_SCORE_CLASS );
        extension.setValue( model.getFactName() );

        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );

        extension = new Extension();
        extension.setName( PMMLExtensionNames.SCORECARD_IMPORTS );
        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );
        List<String> imports = new ArrayList<String>();
        imports.add( model.getFactName() );
        StringBuilder importBuilder = new StringBuilder();
        importBuilder.append( model.getFactName() );

        for ( final org.drools.workbench.models.guided.scorecard.shared.Characteristic characteristic : model.getCharacteristics() ) {
            if ( !imports.contains( characteristic.getFact() ) ) {
                imports.add( characteristic.getFact() );
                importBuilder.append( "," ).append( characteristic.getFact() );
            }
        }
        imports.clear();
        extension.setValue( importBuilder.toString() );

        extension = new Extension();
        extension.setName( PMMLExtensionNames.SCORECARD_RESULTANT_SCORE_FIELD );
        extension.setValue( model.getFieldName() );
        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );

        extension = new Extension();
        extension.setName( PMMLExtensionNames.SCORECARD_PACKAGE );
        extension.setValue( model.getPackageName() );
        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );

        final String modelName = convertToJavaIdentifier( model.getName() );
        pmmlScorecard.setModelName( modelName );
        pmmlScorecard.setInitialScore( model.getInitialScore() );
        pmmlScorecard.setUseReasonCodes( model.isUseReasonCodes() );

        if ( model.isUseReasonCodes() ) {
            pmmlScorecard.setBaselineScore( model.getBaselineScore() );
            pmmlScorecard.setReasonCodeAlgorithm( model.getReasonCodesAlgorithm() );
        }

        for ( final org.drools.workbench.models.guided.scorecard.shared.Characteristic characteristic : model.getCharacteristics() ) {
            final Characteristic _characteristic = new Characteristic();
            characteristics.getCharacteristics().add( _characteristic );

            extension = new Extension();
            extension.setName( PMMLExtensionNames.CHARACTERTISTIC_EXTERNAL_CLASS );
            extension.setValue( characteristic.getFact() );
            _characteristic.getExtensions().add( extension );
View Full Code Here

        final Scorecard pmmlScorecard = ScorecardPMMLUtils.createScorecard();
        final Output output = new Output();
        final Characteristics characteristics = new Characteristics();
        final MiningSchema miningSchema = new MiningSchema();

        Extension extension = new Extension();
        extension.setName( PMMLExtensionNames.SCORECARD_RESULTANT_SCORE_CLASS );
        extension.setValue( model.getFactName() );

        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );

        extension = new Extension();
        extension.setName( PMMLExtensionNames.SCORECARD_IMPORTS );
        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );
        List<String> imports = new ArrayList<String>();
        StringBuilder importBuilder = new StringBuilder();
        for ( Import imp : model.getImports().getImports() ) {
            if ( !imports.contains( imp.getType() ) ) {
                imports.add( imp.getType() );
                importBuilder.append( imp.getType() ).append( "," );
            }
        }
        extension.setValue( importBuilder.toString() );

        extension = new Extension();
        extension.setName( PMMLExtensionNames.SCORECARD_RESULTANT_SCORE_FIELD );
        extension.setValue( model.getFieldName() );
        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );

        extension = new Extension();
        extension.setName( PMMLExtensionNames.SCORECARD_PACKAGE );
        String pkgName = model.getPackageName();
        extension.setValue( !( pkgName == null || pkgName.isEmpty() ) ? pkgName : null );
        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( extension );

        final String modelName = convertToJavaIdentifier( model.getName() );
        pmmlScorecard.setModelName( modelName );
        pmmlScorecard.setInitialScore( model.getInitialScore() );
        pmmlScorecard.setUseReasonCodes( model.isUseReasonCodes() );

        if ( model.isUseReasonCodes() ) {
            pmmlScorecard.setBaselineScore( model.getBaselineScore() );
            pmmlScorecard.setReasonCodeAlgorithm( model.getReasonCodesAlgorithm() );
        }

        for ( final org.drools.workbench.models.guided.scorecard.shared.Characteristic characteristic : model.getCharacteristics() ) {
            final Characteristic _characteristic = new Characteristic();
            characteristics.getCharacteristics().add( _characteristic );

            extension = new Extension();
            extension.setName( PMMLExtensionNames.CHARACTERTISTIC_EXTERNAL_CLASS );
            extension.setValue( characteristic.getFact() );
            _characteristic.getExtensions().add( extension );

            extension = new Extension();
            extension.setName( PMMLExtensionNames.CHARACTERTISTIC_DATATYPE );
            if ( "string".equalsIgnoreCase( characteristic.getDataType() ) ) {
                extension.setValue( XLSKeywords.DATATYPE_TEXT );
            } else if ( "int".equalsIgnoreCase( characteristic.getDataType() ) || "double".equalsIgnoreCase( characteristic.getDataType() ) ) {
                extension.setValue( XLSKeywords.DATATYPE_NUMBER );
            } else if ( "boolean".equalsIgnoreCase( characteristic.getDataType() ) ) {
                extension.setValue( XLSKeywords.DATATYPE_BOOLEAN );
            } else {
                System.out.println( ">>>> Found unknown data type :: " + characteristic.getDataType() );
            }
            _characteristic.getExtensions().add( extension );

            if ( model.isUseReasonCodes() ) {
                _characteristic.setBaselineScore( characteristic.getBaselineScore() );
                _characteristic.setReasonCode( characteristic.getReasonCode() );
            }
            _characteristic.setName( characteristic.getName() );

            final MiningField miningField = new MiningField();
            miningField.setName( characteristic.getField() );
            miningField.setUsageType( FIELDUSAGETYPE.ACTIVE );
            miningField.setInvalidValueTreatment( INVALIDVALUETREATMENTMETHOD.RETURN_INVALID );
            miningSchema.getMiningFields().add( miningField );

            extension = new Extension();
            extension.setName( PMMLExtensionNames.CHARACTERTISTIC_EXTERNAL_CLASS );
            extension.setValue( characteristic.getFact() );
            miningField.getExtensions().add( extension );

            final String[] numericOperators = new String[]{ "=", ">", "<", ">=", "<=" };
            for ( final org.drools.workbench.models.guided.scorecard.shared.Attribute attribute : characteristic.getAttributes() ) {
                final Attribute _attribute = new Attribute();
                _characteristic.getAttributes().add( _attribute );

                extension = new Extension();
                extension.setName( PMMLExtensionNames.CHARACTERTISTIC_FIELD );
                extension.setValue( characteristic.getField() );
                _attribute.getExtensions().add( extension );

                if ( model.isUseReasonCodes() ) {
                    _attribute.setReasonCode( attribute.getReasonCode() );
                }
                _attribute.setPartialScore( attribute.getPartialScore() );

                final String operator = attribute.getOperator();
                final String dataType = characteristic.getDataType();
                String predicateResolver;
                if ( "boolean".equalsIgnoreCase( dataType ) ) {
                    predicateResolver = operator.toUpperCase();
                } else if ( "String".equalsIgnoreCase( dataType ) ) {
                    if ( operator.contains( "=" ) ) {
                        predicateResolver = operator + attribute.getValue();
                    } else {
                        predicateResolver = attribute.getValue() + ",";
                    }
                } else {
                    if ( ArrayUtils.contains( numericOperators, operator ) ) {
                        predicateResolver = operator + " " + attribute.getValue();
                    } else {
                        predicateResolver = attribute.getValue().replace( ",", "-" );
                    }
                }
                extension = new Extension();
                extension.setName( "predicateResolver" );
                extension.setValue( predicateResolver );
                _attribute.getExtensions().add( extension );
            }
        }

        pmmlScorecard.getExtensionsAndCharacteristicsAndMiningSchemas().add( miningSchema );
View Full Code Here

TOP

Related Classes of org.dmg.pmml.pmml_4_1.descr.Characteristics

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.