Package org.carrot2.dcs

Examples of org.carrot2.dcs.DcsApp


public class UniqueLabelAssigner implements ILabelAssigner
{
    public void assignLabels(LingoProcessingContext context, DoubleMatrix2D stemCos,
        IntIntOpenHashMap filteredRowToStemIndex, DoubleMatrix2D phraseCos)
    {
        final PreprocessingContext preprocessingContext = context.preprocessingContext;
        final int firstPhraseIndex = preprocessingContext.allLabels.firstPhraseIndex;
        final int [] labelsFeatureIndex = preprocessingContext.allLabels.featureIndex;
        final int [] mostFrequentOriginalWordIndex = preprocessingContext.allStems.mostFrequentOriginalWordIndex;
        final int desiredClusterCount = stemCos.columns();
View Full Code Here


    /**
     * Discovers labels for clusters.
     */
    void buildLabels(LingoProcessingContext context, ITermWeighting termWeighting)
    {
        final PreprocessingContext preprocessingContext = context.preprocessingContext;
        final VectorSpaceModelContext vsmContext = context.vsmContext;
        final DoubleMatrix2D reducedTdMatrix = context.reducedVsmContext.baseMatrix;
        final int [] wordsStemIndex = preprocessingContext.allWords.stemIndex;
        final int [] labelsFeatureIndex = preprocessingContext.allLabels.featureIndex;
        final int [] mostFrequentOriginalWordIndex = preprocessingContext.allStems.mostFrequentOriginalWordIndex;
View Full Code Here

      private final MutableCharArray tempCharSequence;
      private final Class<?> tokenFilterClass;

      private ChineseTokenizer() throws Exception {
        this.tempCharSequence = new MutableCharArray(new char[0]);

        // As Smart Chinese is not available during compile time,
        // we need to resort to reflection.
        final Class<?> tokenizerClass = ReflectionUtils.classForName(
            "org.apache.lucene.analysis.cn.smart.SentenceTokenizer", false);
View Full Code Here

    // is not affected by the test stopwords and stoplabels.
    ILexicalData lexicalData = preprocessing.lexicalDataFactory
        .getLexicalData(LanguageCode.MALTESE);

    for (String word : wordsToCheck.split(",")) {
      if (!lexicalData.isCommonWord(new MutableCharArray(word))
          && !lexicalData.isStopLabel(word)) {
        clusters.add(new Cluster(word));
      }
    }
  }
View Full Code Here

        if (context.hasLabels())
        {
            // Term-document matrix building and reduction
            final VectorSpaceModelContext vsmContext = new VectorSpaceModelContext(
                context);
            final ReducedVectorSpaceModelContext reducedVsmContext = new ReducedVectorSpaceModelContext(
                vsmContext);
            LingoProcessingContext lingoContext = new LingoProcessingContext(
                reducedVsmContext);

            matrixBuilder.buildTermDocumentMatrix(vsmContext);
View Full Code Here

        // Further processing only if there are words to process
        clusters = Lists.newArrayList();
        if (context.hasLabels())
        {
            // Term-document matrix building and reduction
            final VectorSpaceModelContext vsmContext = new VectorSpaceModelContext(
                context);
            final ReducedVectorSpaceModelContext reducedVsmContext = new ReducedVectorSpaceModelContext(
                vsmContext);
            LingoProcessingContext lingoContext = new LingoProcessingContext(
                reducedVsmContext);
View Full Code Here

     * Discovers labels for clusters.
     */
    void buildLabels(LingoProcessingContext context, ITermWeighting termWeighting)
    {
        final PreprocessingContext preprocessingContext = context.preprocessingContext;
        final VectorSpaceModelContext vsmContext = context.vsmContext;
        final DoubleMatrix2D reducedTdMatrix = context.reducedVsmContext.baseMatrix;
        final int [] wordsStemIndex = preprocessingContext.allWords.stemIndex;
        final int [] labelsFeatureIndex = preprocessingContext.allLabels.featureIndex;
        final int [] mostFrequentOriginalWordIndex = preprocessingContext.allStems.mostFrequentOriginalWordIndex;
        final int [][] phrasesWordIndices = preprocessingContext.allPhrases.wordIndices;
View Full Code Here

          }
        },
       
        // Using the class loader directly because this time we want to omit the prefix
        new ClassLoaderLocator(core.getResourceLoader().getClassLoader())));
   
    this.controller.init(initAttributes);
    this.idFieldName = core.getSchema().getUniqueKeyField().getName();

    // Make sure the requested Carrot2 clustering algorithm class is available
View Full Code Here

    @Override
    protected IResource getXsltResource()
    {
        if (solrXsltAdapter == null) {
            return new ClassResource(SolrDocumentSource.class, "solr-to-c2.xsl");
        } else {
            return solrXsltAdapter;
        }
    }
View Full Code Here

                    .defaultLanguage(LanguageCode.ENGLISH);


                    File resourcesDir = new File(environment.configFile(), "carrot2/resources");

                    ResourceLookup resourceLookup = new ResourceLookup(new DirLocator(resourcesDir));

                    DefaultLexicalDataFactoryDescriptor.attributeBuilder(attributes)
                    .mergeResources(true);
                    LexicalDataLoaderDescriptor.attributeBuilder(attributes)
                    .resourceLookup(resourceLookup);
View Full Code Here

TOP

Related Classes of org.carrot2.dcs.DcsApp

Copyright © 2018 www.massapicom. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.